DOI QR코드

DOI QR Code

Study of Substitution Effect of Anthraquinone by SERS Spectroscopy

  • Lee, Chul-Jae (Department of Chemistry Education, Kyungpook National University) ;
  • Kang, Jae-Soo (Department of Chemistry Education, Kyungpook National University) ;
  • Park, Yong-Tae (Department of Chemistry, Kyungpook National University) ;
  • Rezaul, Karim Mohammad (Department of Chemistry Education, Kyungpook National University) ;
  • Lee, Mu-Sang (Department of Chemistry Education, Kyungpook National University)
  • Published : 2004.12.20

Abstract

In the present study, we carried out comparative research on the anthraquinones Raman spectrum and on the anthraquinones derivative 1,4-diamino-anthraquinone focusing on change in its intermediate in terms of pH and change in the substituent. WE use the SERS method and employ a silver sol prepared by Creighton et al.'s method. From the analysis of the UV spectrum of the mixture solution of 1,4-diamino-anthraquinone and silver sol, we could see that the 1,4-diamino-anthraquinone physically adsorbs silver sol. In terms of the adsorbing orientation, the adsorption of the nitrogen atom in the amino group is perpendicular to the surface of silver sol according to the surface selection rule. From the structure of the 1,4-diamino-anthraquinone intermediate according to the change of pH, we could see that the C=O bond is strengthened in the acidic state and weakened in the neutral and the alkaline state because of the resonance effect of the amines.

Keywords

References

  1. Garrell, R. L. Anal. Chem. 1989, 61, 401. https://doi.org/10.1021/ac00181a001
  2. Surface Enhanced Raman Scattering; Chang, R. K., Furtak, T. E.,Eds.; Plenum: New York, 1982.
  3. Fleischman, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett.1974, 26, 163. https://doi.org/10.1016/0009-2614(74)85388-1
  4. Abe, H.; Mansel, K.; Schultze, W.; Moskovits, M.; Dilella, D. P.J. Chem. Phys. 1981, 74, 792. https://doi.org/10.1063/1.441180
  5. Chen, C. Y.; Burstein, E. Phys. Rev. Lett. 1980, 45, 1287. https://doi.org/10.1103/PhysRevLett.45.1287
  6. Kim, M. S.; Kang, J. S.; Park, S. B.; Lee, M. S. Bull. KoreanChem. Soc. 2003, 24, 633. https://doi.org/10.1007/s11814-007-0016-8
  7. Kang, J. S.; Lee, C. S.; Kim, M. S.; Lee, M. S. Bull. Korean Chem. Soc. 2003, 24, 1599. https://doi.org/10.5012/bkcs.2003.24.11.1599
  8. Ruppin, R. J. Chem. Phys. 1982, 76, 1681. https://doi.org/10.1063/1.443196
  9. Ohtaka, K.; Inonue, M. Phys. Rev. 1982, B25, 677.
  10. Kerker, M.; Blatchford, C. G. Phys. Rev. 1982, B26, 4052.
  11. Gersten, J. I.; Nitzan, A. J. Chem. Phys. 1981, 75, 1139. https://doi.org/10.1063/1.442161
  12. Nishiyama, K.; Tahara, S.; Uchida, Y.; Tanoue, S.; Taniguchi, I. J. Electroanal. Chem. 1999, 478, 83. https://doi.org/10.1016/S0022-0728(99)00415-5
  13. Umadevi, M.; Ramakrishnan, V. Spectrochimica Acta Part A2002, 58, 2941. https://doi.org/10.1016/S1386-1425(02)00038-0
  14. Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G. J. Chem. Soc.,Faraday Trans. 2 1979, 75, 790. https://doi.org/10.1039/f29797500790
  15. Rivas, L.; Sanchez-Cortes, S.; Garcia-Ramos, J. V.; Morcillo, G.Langmuir 2000, 16, 9722. https://doi.org/10.1021/la000557s
  16. Anderson, M. R.; Evans, D. H. J. Electroanl. Chem. 1988, 167,6612.
  17. Moskovits, M. Rev. Mod. Phys 1985, 57, 783. https://doi.org/10.1103/RevModPhys.57.783
  18. Moskovits, M.; Suh, J. S. J. Phys. Chem. 1984, 88, 5526. https://doi.org/10.1021/j150667a013
  19. Moskovits, M.; Suh, J. S. J. Phys. Chem. 1988, 92, 6327. https://doi.org/10.1021/j100333a030
  20. Bull. Korean Chem. Soc. v.24 Kim, M.S.;Kang, J.S.;Park, S.B.;Lee, M.S. https://doi.org/10.5012/bkcs.2003.24.5.633
  21. Nature v.214 Lands, A.M.;Arnold, A.;McAuliff, J.P.;Luduena, F.P.;Brown, T.G., Jr. https://doi.org/10.1038/214597a0
  22. Annu. Rew. Pharmacol. Toxicol. v.37 Strosberg, A.D. https://doi.org/10.1146/annurev.pharmtox.37.1.421

Cited by

  1. Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins vol.10, pp.83, 2013, https://doi.org/10.1098/rsif.2012.1065
  2. Influence of Nonionic Surfactant on Hydrolysis of Vinyl Sulfone Reactive Dye vol.18, pp.6, 2015, https://doi.org/10.1007/s11743-015-1726-2
  3. Dual-Responsive Lipid Nanotubes: Two-Way Morphology Control by pH and Redox Effects vol.32, pp.21, 2016, https://doi.org/10.1021/acs.langmuir.6b00350
  4. Characterization of Growth Patterns of Nanoscale Organic Films on Carbon Electrodes by Surface Enhanced Raman Spectroscopy vol.89, pp.12, 2017, https://doi.org/10.1021/acs.analchem.7b00362
  5. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering vol.135, pp.6, 2010, https://doi.org/10.1039/c0an00076k
  6. Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface vol.27, pp.4, 2004, https://doi.org/10.5012/bkcs.2006.27.4.545
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. 은 양이온과 PVP의 상호작용에 대한 연구 vol.53, pp.5, 2004, https://doi.org/10.5012/jkcs.2009.53.5.565
  9. 은이 첨가된 생체 활성 세라믹 복합체 연구 vol.53, pp.6, 2004, https://doi.org/10.5012/jkcs.2009.53.6.761
  10. Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy vol.115, pp.1, 2004, https://doi.org/10.1021/jp107118y
  11. Adsorption and reduction reactions of anthraquinone derivatives on gold electrodes studied with electrochemical surface‐enhanced Raman spectroscopy vol.43, pp.10, 2004, https://doi.org/10.1002/jrs.4083
  12. Enhanced electrochemical performance of electrosynthesized fibrillar polypyrrole film vol.308, pp.no.pb, 2022, https://doi.org/10.1016/j.matlet.2021.131295