References
- Forbe, C. L. Pulp Pap. 1992, 66(11), 90.
- Li, Y. Food Chem. Toxicol. 1996, 34, 887. https://doi.org/10.1016/S0278-6915(96)00044-0
- Bower, L. D. Anal. Chem. 1986, 513A.
- Kabasakaliam, P.; Kalliney, S.; Westoctt, A. Clin. Chem. 1974, 20,606.
- Greenspan, F. P.; McKellar, D. G. Anal. Chem. 1949, 20, 1061. https://doi.org/10.1021/ac60023a020
- Graf, E.; Penniston, J. T. Clin. Chem. 1980, 26, 658.
- Sellers, R. M. Analyst 1980, 105, 950. https://doi.org/10.1039/an9800500950
- Wolf, W. C. Anal. Chem. 1962, 34, 1328. https://doi.org/10.1021/ac60190a040
- Andreae, W. A. Nature 1955, 175, 859. https://doi.org/10.1038/175859a0
- Guilbault, G. G.; Brignac Jr., P. J.; Juneau, M. Anal. Chem. 1968,40, 1256. https://doi.org/10.1021/ac60264a027
- Gallati, H. J. Clin. Chem. Clin. Biochem. 1979, 17, 1.
- Lee, M.; Noone, C. B.; O'Sulivan, D.; Heikes, B. G. J. Atoms.Oceanic Technol. 1995, 12, 1060. https://doi.org/10.1175/1520-0426(1995)012<1060:MFTCAH>2.0.CO;2
- Kobayashi, K.; Kawai, S. J. Chromatogr. 1982, 245, 339. https://doi.org/10.1016/S0021-9673(00)88020-6
- Iswase, K. S.; Tanaka, N. Anal. Chim. Acta 1979, 110, 157. https://doi.org/10.1016/S0003-2670(01)83542-X
- Lin, M. S.; Jan, B. I. Electroanalysis 1997, 9, 340. https://doi.org/10.1002/elan.1140090416
- Guo, Z. X.; Shen, H.-X.; Li, L. Mikrochim Acta 1999, 131,171. https://doi.org/10.1007/s006040050023
- Schmid, M.; Krebs, B. Karst Analyst 1998, 123, 2323. https://doi.org/10.1039/a806432f
- Huang, X.-M.; Zhu, M.; Shen, H.-X. Mikrochim Acta 1998, 128,87. https://doi.org/10.1007/BF01242195
- Aubry, J. M.; Bouttemy, S. J. Am. Chem. Soc. 1997, 119, 5286. https://doi.org/10.1021/ja9644079
- Geissan, T. A. Principle of Organic Chemistry; W. H. Freemanand Company: San Franciso, U.S.A., 1997; p 769.
Cited by
- Spectrophotometric Determination of Hydrogen Peroxide Using Leucocrystal Violet in Micellar Medium vol.30, pp.5, 2009, https://doi.org/10.1080/01932690802597913
- Dibenzazepin hydrochloride as a new spectrophotometric reagent for determination of hydrogen peroxide in plant extracts vol.184, pp.10, 2012, https://doi.org/10.1007/s10661-011-2395-x
- Quantitative analysis of hydrogen peroxide with special emphasis on biosensors vol.41, pp.3, 2018, https://doi.org/10.1007/s00449-017-1878-8
- Sensitized chemiluminescence of luminol catalyzed by colloidal dispersions of nanometer-sized ferric oxides vol.144, pp.3, 2004, https://doi.org/10.1016/j.cej.2008.07.035
- Delaminated montmorillonite with iron(III)-TiO2species as a photocatalyst for removal of a textile azo-dye from aqueous solution vol.37, pp.11, 2004, https://doi.org/10.1080/09593330.2015.1114031
- New Spectrophotometric Method for the Assessment of Catalase Enzyme Activity in Biological Tissues vol.16, pp.8, 2020, https://doi.org/10.2174/1573411016666200116091238
- Paper-Based Analytical Devices for the Rapid and Direct Electrochemical Detection of Hydrogen Peroxide in Tomato Leaves Inoculated with Botrytis cinerea vol.20, pp.19, 2004, https://doi.org/10.3390/s20195512
- Can use of hydroxychloroquine and azithromycin as a treatment of COVID-19 affect aquatic wildlife? A study conducted with neotropical tadpole vol.780, pp.None, 2004, https://doi.org/10.1016/j.scitotenv.2021.146553
- Environmental impacts of COVID-19 treatment: Toxicological evaluation of azithromycin and hydroxychloroquine in adult zebrafish vol.790, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.148129
- From carrion-eaters to plastic material plunderers: Toxicological impacts of plastic ingestion on black vultures, Coragyps atratus (Cathartiformes: Cathartidae) vol.424, pp.no.pd, 2004, https://doi.org/10.1016/j.jhazmat.2021.127753