DOI QR코드

DOI QR Code

Silica Sulfuric Acid as a Mild and Efficient Reagent for the Acetylation of Alcohols in Solution and under Solvent Free Conditions

  • Published : 2004.02.20

Abstract

Keywords

References

  1. Green, T. W.; Wuts, P. J. M. Protective Groups in OrganicSynthesis, 3rd Ed.; Wiley: New York, 1999.
  2. Hanson, J. R. Protecting Groups in Organic Synthesis, 1st Ed.;Blackwell Science, Inc.: Malden, M. A., 1999.
  3. Stork, G.; Takahashi, T.; Kawamoto, I.; Suzuki, T. J. Am. Chem.Soc. 1978, 100, 8272. https://doi.org/10.1021/ja00494a045
  4. Steglich, W.; Höfle, G. Angew. Chem., Int. Ed. Engl. 1969, 8, 981. https://doi.org/10.1002/anie.196909811
  5. Review: Hofle, G.; Steglich, W.; Vorbrüggen, H. Angew. Chem.,Int. Ed. Engl. 1978, 17, 569. https://doi.org/10.1002/anie.197805691
  6. Kumareswaran, R.; Gupta, A.; Vankar, Y. D. Synth. Commun.1997, 27, 277. https://doi.org/10.1080/00397919708005028
  7. Vedejs, E.; Daugulis, O. J. Org. Chem. 1996, 61, 5702. https://doi.org/10.1021/jo9609485
  8. Ishihara, K.; Kubota, M.; Yamamoto, H. Synlett 1996, 265.
  9. Miyashita, M.; Shiina, I.; Miyoshi, S.; Mukaiyama, T. Bull. Chem.Soc. Jpn. 1993, 66, 1516. https://doi.org/10.1246/bcsj.66.1516
  10. Iqbal, J.; Srivastava, R. R. J. Org. Chem. 1992, 57, 2001. https://doi.org/10.1021/jo00033a020
  11. Mukaiyama, T.; Shiina, I.; Miyashita, M. Chem. Lett. 1992, 625.
  12. Saravanan, P.; Singh, V. Tetrahedron Lett. 1999, 40, 2611. https://doi.org/10.1016/S0040-4039(99)00229-4
  13. Chauhan, K. K.; Forst, C. G.; Love, L.; Waite, D. Synlett 1999,1743.
  14. Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org.Chem. 1996, 61, 4560. https://doi.org/10.1021/jo952237x
  15. Reigo, J. M.; Sedin, Z.; Zaldivar, J. M.; Marziano, N. C.; Tortato,C. Tetrahedron Lett. 1996, 37, 513. https://doi.org/10.1016/0040-4039(95)02174-4
  16. Turro, N. J. Tetrahedron 1987, 43, 1589. https://doi.org/10.1016/S0040-4020(01)90273-X
  17. Zolfigol, M. A.; Bamoniri, A. Synlett 2002, 1621.
  18. Zolfigol, M. A. Tetrahedron 2001, 57, 9509. https://doi.org/10.1016/S0040-4020(01)00960-7
  19. Zolfigol, M. A.; Shirini, F.; Ghorbani Choghamarani, A.;Mohammadpoor-Baltork, I. Green. Chem. 2002, 4, 562. https://doi.org/10.1039/b208328k
  20. Shirini, F.; Zolfigol, M. A.; Mohammadi, K. Phosphorus, Sulfurand Silicon and the Related Elements 2003, 178, 1617. https://doi.org/10.1080/10426500307877
  21. Gauttret, P.; El-Ghamarti, S.; Legrand, A.; Coutrier, D.; Rigo, B.Synth. Commun. 1996, 126, 707.
  22. Aldrich Catalogue, Handbook of Fine Chemicals, 1990-1991.
  23. CRC Handbook of Chemistry and Physics, 54th Ed.; CRC Press:Boca Raton, 1973.
  24. Beilstein Handbook of Organic Chemistry, 4th Ed.; Springer:Berlin, 1988.

Cited by

  1. : Solvent‐Free Oxidation of Alcohols and Deprotection and Oxidative Deprotection of Trimethylsilyl Ethers vol.35, pp.22, 2005, https://doi.org/10.1080/00397910500297362
  2. Efficient Acetylation of Alcohols, Phenols, and Amines Catalyzed by Melamine Trisulfonic Acid (MTSA) vol.40, pp.7, 2010, https://doi.org/10.1080/00397910903029941
  3. from Hydrogen Peroxide/Acids/Iodide Potassium or Sodium Systems vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4366
  4. One-Pot Synthesis of Dihydropyrimidine-Thione Derivatives Using Tungstate Sulfuric Acid (TSA) as a Recyclable Catalyst vol.187, pp.6, 2012, https://doi.org/10.1080/10426507.2011.616562
  5. Glycerol-Based Carbon-SO<sub>3</sub>H Catalyzed Benign Synthetic Protocol for the Acetylation of Alcohols, Phenols and Amines under Solvent-Free Conditions vol.03, pp.02, 2013, https://doi.org/10.4236/gsc.2013.32014
  6. Acetylation of Phenols, Anilines, and Thiols Using Silica Sulfuric Acid under Solvent-Free Conditions vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/268654
  7. Sol–gel derived LaFeO3/SiO2 nanocomposite: synthesis, characterization and its application as a new, green and recoverable heterogeneous catalyst for the efficient acetylation of amines, alcohols and phenols vol.11, pp.4, 2014, https://doi.org/10.1007/s13738-013-0377-3
  8. Effective acetylation of alcohols, phenols and amines over mesoporous aluminophosphate solid acids under solvent free conditions vol.21, pp.6, 2014, https://doi.org/10.1007/s10934-014-9858-8
  9. Melamine trisulfonic acid (MTSA): an efficient and recyclable heterogeneous catalyst in green organic synthesis vol.5, pp.110, 2015, https://doi.org/10.1039/C5RA17489A
  10. Modified mesoporous aluminophosphate as an efficient solid acid catalyst for the synthesis of novel O- and N-acetylated compounds: solvent free condition vol.23, pp.4, 2016, https://doi.org/10.1007/s10934-016-0167-2
  11. -Butyl and Benzyl Acetates vol.48, pp.4, 2016, https://doi.org/10.1080/00304948.2016.1194126
  12. Silica Sulfuric Acid as a Mild and Efficient Reagent for the Acetylation of Alcohols in Solution and under Solvent-Free Conditions. vol.35, pp.32, 2004, https://doi.org/10.1002/chin.200432072
  13. Tungstate Sulfuric Acid: A Novel and Efficient Solid Acidic Reagent for the Oxidation of Thiols to Disulfides and the Oxidative Demasking of 1,3-Dithianes vol.181, pp.12, 2006, https://doi.org/10.1080/10426500600864965
  14. Silica Sulfuric Acid Promotes Aza-Michael Addition Reactions under Solvent-Free Condition as a Heterogeneous and Reusable Catalyst vol.14, pp.11, 2009, https://doi.org/10.3390/molecules14114779
  15. Sulfonic acid-functionalized ordered nanoporous Na+-montmorillonite (SANM) as an efficient and recyclable catalyst for the tetrahydropyranylation and detetrahydropyranylation of alcohols and phenols vol.4, pp.1, 2014, https://doi.org/10.1007/s40097-014-0085-2
  16. Werner transition-metal complex (WTMC)-mediated mild and efficient chemo-selective acylation of phenols and anilines under solvent-free condition vol.65, pp.9, 2018, https://doi.org/10.1002/jccs.201800013
  17. Functionalization of 3-chloroformylcoumarin to coumarin Schiff bases using reusable catalyst: an approach to molecular docking and biological studies vol.5, pp.5, 2018, https://doi.org/10.1098/rsos.172416
  18. Molybdate Sulfuric Acid/NaNO2: A Novel Heterogeneous System for theN-Nitrosation of Secondary Amines under Mild Conditions vol.89, pp.12, 2006, https://doi.org/10.1002/hlca.200690261
  19. -isoquinolonic acids catalyzed by silica sulfuric acid under mild and heterogeneous conditions vol.43, pp.1, 2006, https://doi.org/10.1002/jhet.5570430129
  20. )-ones catalyzed by tungstate sulfuric acid in solvent-free conditions vol.45, pp.4, 2008, https://doi.org/10.1002/jhet.5570450438
  21. Saccharinsulfonic acid: an efficient and recyclable catalyst for acetylation of alcohols, phenols, and amines vol.140, pp.12, 2009, https://doi.org/10.1007/s00706-009-0214-7
  22. TUNGSTATE SULFURIC ACID/ KMnO4 AS A NOVEL HETEROGENEOUS SYSTEM FOR THE RAPID AROMATIZATION OF HANTZSCH 1, 4-DIHYDROPYRIDINES UNDER MILD CONDITIONS vol.11, pp.6, 2004, https://doi.org/10.1515/hc.2005.11.6.513
  23. Silicasulfuric Acid/NaNO2 as a New Reagent for Deprotection of S,S-Acetals under Solvent-free Conditions vol.26, pp.5, 2004, https://doi.org/10.5012/bkcs.2005.26.5.808
  24. Tungstate Sulfuric Acid (TSA) /NaNO2 as a Novel Heterogeneous System for the N-Nitrosation of Secondary Amines under Mild Conditions vol.26, pp.7, 2005, https://doi.org/10.5012/bkcs.2005.26.7.1125
  25. Tungstate Sulfuric Acid (TSA)/NaNO2 as a Novel Heterogeneous System for Rapid Deoximation vol.26, pp.9, 2004, https://doi.org/10.5012/bkcs.2005.26.9.1431
  26. Trimethylsilylation of Alcohols and Phenols using KBr as an Efficient and Reusable Catalyst vol.36, pp.8, 2004, https://doi.org/10.1080/00397910500501227
  27. Facile and Efficient Selective Mono-nitration of Phenols under Solvent-free Conditions vol.27, pp.7, 2004, https://doi.org/10.5012/bkcs.2006.27.7.1056
  28. Facile and Efficient Pinacol Rearrangement Using Tungstophosphoric Acid (H3PW12O40) under Solvent-free Conditions vol.27, pp.8, 2004, https://doi.org/10.5012/bkcs.2006.27.8.1246
  29. Sulfuric acid immobilized on silica: an efficient promoter for one-pot acetalation–acetylation of sugar derivatives vol.47, pp.26, 2004, https://doi.org/10.1016/j.tetlet.2006.04.118
  30. NIS/H2SO4–Silica: a mild and efficient reagent system for the hydrolysis of thioglycosides vol.341, pp.16, 2004, https://doi.org/10.1016/j.carres.2006.09.005
  31. Sulphated zirconia catalyzed acylation of phenols, alcohols and amines under solvent free conditions vol.276, pp.1, 2004, https://doi.org/10.1016/j.molcata.2007.07.008
  32. Concise synthesis of two trisaccharides related to the saponin isolated from Centratherum anthelminticum vol.63, pp.46, 2004, https://doi.org/10.1016/j.tet.2007.08.077
  33. V(HSO4)3 catalyzed chemoselectivity acetylation of alcohols and phenols in solution and under solvent-free conditions vol.20, pp.4, 2004, https://doi.org/10.1016/j.cclet.2008.11.024
  34. QSAR rationales for the 1,2-diarylcyclopentenes as prostaglandin EP1 receptor antagonists: Potentially useful in the treatment of inflammatory pain vol.1, pp.4, 2010, https://doi.org/10.5155/eurjchem.1.4.325-334.195
  35. Decatungstodivanadogermanic heteropoly acid (H6GeW10V2O40.22H2O): A novel, green and reusable catalyst for efficient acetylation of alcohols and phenols under solvent-free conditions vol.1, pp.4, 2010, https://doi.org/10.5155/eurjchem.1.4.335-340.194
  36. Rice husk supported FeCl3 nanoparticles as an efficient and reusable catalyst for the chemoselective 1,1-diacetate protection and deprotection of aldehydes vol.363, pp.None, 2012, https://doi.org/10.1016/j.molcata.2012.05.010
  37. Silica sulfuric acid: a reusable solid catalyst for the synthesis of N-substituted amides via the Ritter reaction vol.3, pp.16, 2004, https://doi.org/10.1039/c3ra23157g
  38. Sulfonic acid functionalized ordered nanoporous Na+ montmorillonite as an efficient and recyclable catalyst for the chemoselective methoxymethylation of alcohols vol.3, pp.1, 2004, https://doi.org/10.1186/2193-8865-3-2
  39. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions vol.9, pp.None, 2004, https://doi.org/10.3762/bjoc.9.269
  40. Synthesis of benzo[a]furo[2, 3-c]phenazine derivatives through an efficient, rapid and via microwave irradiation under solvent-free conditions catalyzed by H3PW12O40@F vol.49, pp.1, 2004, https://doi.org/10.1080/21691401.2021.1894163