DOI QR코드

DOI QR Code

Effect of Linker for Immobilization of Glutathione on BSA-Assembled Controlled Pore Glass Beads

  • Chen, Li-Hua (Center for Integrated Molecular Systems, Department of Chemistry, Pohang University of Science and Technology, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University) ;
  • Choi, Young-Seo (Center for Integrated Molecular Systems, Department of Chemistry, Pohang University of Science and Technology) ;
  • Park, Jung-Won (Center for Integrated Molecular Systems, Department of Chemistry, Pohang University of Science and Technology) ;
  • Kwon, Joseph (Sigmol Incorporation) ;
  • Wang, Rong-Shun (Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University) ;
  • Lee, Tae-Hoon (Sigmol Incorporation) ;
  • Ryu, Sung-Ho (Department of Life Science, Pohang University of Science and Technology) ;
  • Park, Joon-Won (Center for Integrated Molecular Systems, Department of Chemistry, Pohang University of Science and Technology)
  • Published : 2004.09.20

Abstract

Controlled pore glass bead was modified with bovine serum albumin (BSA), and glutathione (GSH) was immobilized through three kinds of linkers on top of BSA. Bis(3-sulfo-N-hydroxysuccinimide suberate) sodium salt $(BS^3)$, N-hydroxysuccinimide 3-(2-pyridyldithio)propionate (SPDP), or N-hydroxysuccinimide 4-maleimidobutyrate (GMBS) was introduced into the BSA-bound matrix. Subsequently, GSH was immobilized by addition of thiol side chain into the maleimido moiety, replacing a disulfide group, or formation of an amide group upon releasing 3-sulfo-N-hydroxysuccimide group. It was observed that conjugation methodology played a critical role for activity of the immobilized GSH. SDS-PAGE chromatogram showed that the matrix of glutathione immobilized on BSA through GMBS manifested high selectivity towards glutathione-S-transferase (GST) in cell lysate.

Keywords

References

  1. Cuatrecasas, P.; Wilchek, M.; Anfinsen, C. B. Proc. Natl. Acad.Sci. U.S.A. 1968, 61, 636. https://doi.org/10.1073/pnas.61.2.636
  2. Poschalko, A.; Rohr, T.; Gruber, H.; Bianco, A.; Guichard, G.;Briand, J. P.; Weber, V.; Falkenhagen, D. J. Am. Chem. Soc. 2003,125, 13415. https://doi.org/10.1021/ja035874a
  3. Shimizu, N.; Sugimoto, K.; Tang, J. W.; Nishi, T.; Sato, I.;Hiramoto, M.; Aizawa, S.; Hatakeyama, M.; Ohba, R.; Hatori, H.;Yoshikawa, T.; Suzuki, F.; Oomori, A.; Tanaka, H.; Kawaguchi,H.; Watanabe, H.; Handa, H. Nature Biotechnology 2000, 18, 877. https://doi.org/10.1038/78496
  4. Hahn, R.; Berger, E.; Pflegerl, K.; Jungbauer, A. Anal. Chem.2003, 75, 543. https://doi.org/10.1021/ac025846v
  5. Hudson, D. J. Comb. Chem. 1999, 1, 403. https://doi.org/10.1021/cc990046s
  6. Dancil, K. S.; Greiner, D. P.; Sailor, M. J. J. Am. Chem. Soc.1999, 121, 7925. https://doi.org/10.1021/ja991421n
  7. Ukeda, H.; Ishii, T.; Sawamura, M.;Kusunose, H. Analytica Chimica Acta 1995, 308, 261. https://doi.org/10.1016/0003-2670(94)00658-9
  8. MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760.
  9. Baldo, B. A.; Tovey, E. R.; Ford, S. A. Journal of Biochemical andBiophysical Methods 1986, 12, 271. https://doi.org/10.1016/0165-022X(86)90063-1
  10. Qu, Y.; Berghman, L. R.;Vandesande, F. Analytical Biochemistry 1998, 259, 167. https://doi.org/10.1006/abio.1998.2648
  11. Smith, D. B.; Johnson, K. S. Gene 1988, 67, 31. https://doi.org/10.1016/0378-1119(88)90005-4
  12. Sebastian,P.; Wallwitz, J.; Schmidt, S. J. Chromatogr. B 2003, 786, 343. https://doi.org/10.1016/S1570-0232(02)00915-7
  13. Wu, X. Q.; Oppermann, U. J. Chromatogr. B 2003, 786, 177. https://doi.org/10.1016/S1570-0232(02)00810-3
  14. De Carlos, A.; Montenegro, D.; Alonso-Rodriguez, A.; Paez de laCadena, M.; Rodriguez-Berrocal, F. J.; Martinez-Zorzano, V. S. J.Chromatogr. B 2003, 786, 7. https://doi.org/10.1016/S1570-0232(02)00721-3
  15. Chen, L. H.; Choi, Y. S.; Kwon, J.; Wang, R. S.; Lee, T.; Ryu, S.H.; Park, J. W. Tetrahedron 2004, 60, 7293. https://doi.org/10.1016/j.tet.2004.05.043
  16. Amatschek, K.; Necina, R.; Hahn, R.; Schallaun, E.; Schwinn, H.;Josic, D.; Jungbauer, A. J. High Resol. Chromatogr. 2000, 23,47. https://doi.org/10.1002/(SICI)1521-4168(20000101)23:1<47::AID-JHRC47>3.0.CO;2-P
  17. Ji, X. H.; Zhang, P. H.; Armstrong, R. N.; Gilliland, G. L.Biochemistry 1992, 31, 10169. https://doi.org/10.1021/bi00157a004
  18. Collins, R. C.; Haller, W. Anal. Biochem. 1973, 54, 47. https://doi.org/10.1016/0003-2697(73)90245-5
  19. Haller, W. J. Chromatogr. 1973, 85, 129. https://doi.org/10.1016/S0021-9673(01)91872-2
  20. Simons, S. S. Jr. J. Biol. Chem. 1987, 262, 9669.
  21. Oye, G.; Roucoules, V.; Oates, L. J.; Cameron, A. M.; Cameron,N. R.; Steel, P. G.; Badyal, J. P. S.; Davis, B. G.; Coe, D. M.; Cox,R. A. J. Phys. Chem. B 2003, 107, 3496. https://doi.org/10.1021/jp021262l