References
- Henglein, A. Chem. Rev. 1989, 89, 1861. https://doi.org/10.1021/cr00098a010
- Weller, H. Angew. Chem. Int. Ed. Engl. 1993, 32, 41. https://doi.org/10.1002/anie.199300411
- Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226. https://doi.org/10.1021/jp9535506
- Chen, C.-C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P.Science 1997, 276, 398. https://doi.org/10.1126/science.276.5311.398
- Sinha, S. K. Appl. Surf. Sci. 2001, 182, 176. https://doi.org/10.1016/S0169-4332(01)00439-1
- Choi, H. C.; Ahn, H.-J.; Jung, Y. M.; Lee, M. K.; Shin, H. J.; Kim,S. B.; Sung, Y.-E. Appl. Spectrosc. accepted paper.
- Choi, H. C.; Jung, Y. M.; Kim, S. B. Vib. Spectrosc. submitted forpublication.
- Noda, I. Appl. Spectrosc. 1993, 47, 1329. https://doi.org/10.1366/0003702934067694
- Noda, I.; Dowrey, A. E.; Marcott, C.; Story, G. M.; Ozaki, Y. Appl.Spectrosc. 2000, 54, 236A. https://doi.org/10.1366/0003702001950454
- Noda, I. Appl. Spectrosc. 2000, 54, 994. https://doi.org/10.1366/0003702001950472
- http://science.kwansei.ac.jp/~ozaki/
- Howard, C. J.; Sabine, T. M.; Dickson, F. Acta Crystallogr. Sec. B1991, 47, 462. https://doi.org/10.1107/S010876819100335X
- Ohsaka, T. J. Phys. Soc. Jpn. 1980, 48, 1661. https://doi.org/10.1143/JPSJ.48.1661
- Sekiya, T.; Ohta, S.; Kamei, S.; Hanakawa, M.; Kurita, S. J. Phys.Chem. Solids 2001, 62, 717. https://doi.org/10.1016/S0022-3697(00)00229-8
- Lagarec, K.; Desgreniers, S. Solid State Commun. 1995, 94, 519. https://doi.org/10.1016/0038-1098(95)00129-8
- Wang, Z.; Saxena, S. K. Solid State Commun. 2001, 118, 75. https://doi.org/10.1016/S0038-1098(01)00046-1
Cited by
- New Approaches to Generalized Two‐Dimensional Correlation Spectroscopy and Its Applications vol.41, pp.5, 2006, https://doi.org/10.1080/05704920600845868
- Preparation of metal oxide nanoparticles in ionic liquid medium vol.14, pp.7, 2012, https://doi.org/10.1007/s11051-012-0939-9
- –Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity vol.4, pp.8, 2012, https://doi.org/10.1021/am301287m
- Synthesis and photocatalytic performance of TiO2 nanospheres–graphene nanocomposite under visible and UV light irradiation vol.47, pp.7, 2012, https://doi.org/10.1007/s10853-011-6153-9
- Silver Nanoparticles Supported on TiO<sub>2</sub> and Their Antibacterial Properties: Effect of Surface Confinement and Nonexistence of Plasmon Resonance vol.05, pp.12, 2014, https://doi.org/10.4236/msa.2014.512091
- Cost effective facile synthesis of TiO2 nanograins for flexible DSSC application using rose bengal dye vol.10, pp.5, 2014, https://doi.org/10.1007/s13391-014-3200-0
- Composite vol.2014, pp.1687-529X, 2014, https://doi.org/10.1155/2014/475713
- for the degradation of humic acid vol.5, pp.41, 2015, https://doi.org/10.1039/C5RA00714C
- Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications vol.50, pp.23, 2015, https://doi.org/10.1007/s10853-015-9303-7
- Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye vol.122, pp.4, 2016, https://doi.org/10.1007/s00339-016-9965-2
- A comparative study on thermal conductivity of TiO2/ethylene glycol–water and TiO2/propylene glycol–water nanofluids pp.1588-2926, 2017, https://doi.org/10.1007/s10973-017-6616-6
- Synthesis, Characterization and Photocatalytic Activity of Carbon Nanotube/Titanium Dioxide Nanocomposites pp.2191-4281, 2017, https://doi.org/10.1007/s13369-017-2861-z
- Enhanced Photocatalytic Properties of Titanium Dioxide Thin Films Produced from the AC Electric Field Assisted Chemical Vapor Deposition of Titanium (IV) Chloride in Toluene vol.3, pp.7, 2014, https://doi.org/10.1149/2.0161407jss
- Progress in two-dimensional (2D) correlation spectroscopy vol.799, pp.1, 2006, https://doi.org/10.1016/j.molstruc.2006.03.053
- Novel Phosphotungstate-titania Nanocomposites from Aqueous Media vol.28, pp.7, 2004, https://doi.org/10.5012/bkcs.2007.28.7.1097
- Synthesis and electrochemical studies of a layered spheric TiO2 through low temperature solvothermal method vol.54, pp.16, 2009, https://doi.org/10.1016/j.electacta.2009.02.044
- Enhanced Conversion Efficiency in Dye-Sensitized Solar Cells Based on Hydrothermally Synthesized TiO2−MWCNT Nanocomposites vol.1, pp.9, 2004, https://doi.org/10.1021/am900396m
- Hydrothermal Synthesis and Morphological Evolution of Mesoporous Titania−Silica vol.113, pp.47, 2004, https://doi.org/10.1021/jp9037842
- High efficiency inverted polymer solar cells with room-temperature titanium oxide/polyethylenimine films as electron transport layers vol.2, pp.41, 2014, https://doi.org/10.1039/c4ta03838j
- Ionic liquid-assisted hydrothermal synthesis of TiO2nanoparticles and its applications towards the photocatalytic activity and electrochemical sensor vol.10, pp.18, 2004, https://doi.org/10.1080/17458080.2015.1014870
- Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings vol.304, pp.None, 2004, https://doi.org/10.1016/j.surfcoat.2016.04.063
- High-Pressure Phase Transition of Micro- and Nanoscale HoVO4 and High-Pressure Phase Diagram of REVO4 with RE Ionic Radius vol.3, pp.12, 2004, https://doi.org/10.1021/acsomega.8b02519
- A multifunctional Ag/TiO 2 /reduced graphene oxide with optimal surface‐enhanced Raman scattering and photocatalysis vol.102, pp.7, 2004, https://doi.org/10.1111/jace.16273