References
- Patzke, G. R.; Krumeich, F.; Nesper, R. Angew. Chem. Inter. Ed.2002, 35, 2446.
- Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32,435. https://doi.org/10.1021/ar9700365
- Kovtyukhova, N. I.; Mallouk, T. E. Chem. Eur. J. 2002, 8, 4355.
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.;Kin, F.; Yan, H. Adv. Mater. 2003, 15, 353. https://doi.org/10.1002/adma.200390087
- Lao, J. Y.; Huang, J. Y.; Wang, D. Z.; Ren, Z. F. Adv. Mater. 2004,16, 65. https://doi.org/10.1002/adma.200305684
- Lew, K. K.; Pan, L.; Dickey, E. C.; Redwing, J. M. Adv. Mater.2003, 15, 2073. https://doi.org/10.1002/adma.200306035
- Zhou, J.; Xu, N. S.; Deng, S. Z.; Chen, J.; She, J. C. Chem. Phys.Lett. 2003, 382, 443. https://doi.org/10.1016/j.cplett.2003.10.002
- Jung, W. S. Bull. Korean Chem. Soc. 2004, 25, 51. https://doi.org/10.5012/bkcs.2004.25.1.051
- Prieto, A. L.; Martin-Gonzalez, M.; Kenyani, J.; Grosky, R.;Sands, T.; Stacy, A. M. J. Am. Chem. Soc. 2003, 125, 2388. https://doi.org/10.1021/ja029394f
- Sander, M. S.; Prieto, A. M.; Gronsky, R.; Sands, T.; Stacy, A. M.Adv. Mater. 2002, 14, 665. https://doi.org/10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-B
- Zhang, Y.; Li, G.; Wang, Y.; Zhang, B.; Song, W.; Zhang, L. Adv.Mater. 2002, 14, 1227. https://doi.org/10.1002/1521-4095(20020903)14:17<1227::AID-ADMA1227>3.0.CO;2-2
- Schonenberger, C.; van der Zander, B. M. I.; Fokkink, L. G. J.;Henny, M.; Schmid, C.; Kruger, M.; Bachtold, A.; Huber, R.;Staufer, U. J. Phys. Chem. B 1997, 101, 5497. https://doi.org/10.1021/jp963938g
- Yang, H.; Shi, Q.; Tian, B.; Lu, Q.; Gao, F.; Xie, S.; Fan, J.; Yu, C.;Tu, B.; Zhao, D. J. Am. Chem. Soc. 2003, 125, 4724. https://doi.org/10.1021/ja034005i
- Jin, C. G.; Xiang, X. Q.; Jia, C.; Liu, W. F.; Cai, W. L.; Yao, L. Z.;Li, X. G. J. Phys. Chem. B 2004, 108, 1844. https://doi.org/10.1021/jp036133z
- Tian, Y. T.; Meng, G. W.; Gao, T.; Sun, S. H.; Xie, T.; Peng, X. S.;Ye, C. H.; Zhang, L. D. Nanotechnology 2004, 15, 189. https://doi.org/10.1088/0957-4484/15/1/036
- Wang, Y. C.; Leu, I. C.; Hon, M. H. J. Appl. Phys. 2004, 95,1444. https://doi.org/10.1063/1.1637710
- Zhang, H. M.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Chem. Commun.2003, 3022.
- Yoon, C. H.; Suh, J. S. Bull. Korean Chem. Soc. 2002, 23, 1519. https://doi.org/10.5012/bkcs.2002.23.11.1519
- Park, I. S.; Jang, S. R.; Hong, J. S.; Vittal, R.; Kim, K. J. Chem.Mater. 2003, 15, 4633. https://doi.org/10.1021/cm030541y
- Huang, L.; Wang, H.; Wang, Z.; Mitra, A.; Zhao, D.; Yan, Y.Chem. Mater. 2002, 14, 876. https://doi.org/10.1021/cm010819r
- Huang, L.; Wang, H.; Wang, Z.; Mitra, A.; Bozhilov, K. N.; Yan,Y. Adv. Mater. 2002, 14, 61. https://doi.org/10.1002/1521-4095(20020104)14:1<61::AID-ADMA61>3.0.CO;2-Y
- Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.;Zhang, Y.; Saykally, R. J.; Yang, P. Angew. Chem. Int. Ed. Engl.2003, 42, 3031. https://doi.org/10.1002/anie.200351461
- Rao, C. N. R.; Deepak, F. L.; Gundiah, G.; Govindara, A. Prog.Solid State Chem. 2003, 31, 5. https://doi.org/10.1016/j.progsolidstchem.2003.08.001
- Wang, W.; Li, Y. J. Am. Chem. Soc. 2002, 124, 2880. https://doi.org/10.1021/ja0177105
- Xu, A.; Fang, Y.; You, L.; Liu, H. J. Am. Chem. Soc. 2003, 125,1494. https://doi.org/10.1021/ja029181q
- Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. https://doi.org/10.1021/ja0299452
- Li, Y.; Wang, J.; Deng, Z.; Wu, Y.; Sun, X.; Yu, D.; Yang, P. J. Am.Chem. Soc. 2001, 123, 9904. https://doi.org/10.1021/ja016435j
- Cao, M.; Hu, C.; Peng, G.; Qi, Y.; Wang, E. J. Am. Chem. Soc.2003, 125, 4982. https://doi.org/10.1021/ja029620l
- Wang, X.; Li, Y. Angew. Chem. Int. Ed. 2002, 41, 4790. https://doi.org/10.1002/anie.200290049
- Li, Y.; Ding, Y.; Wang, Z. Adv. Mater. 1999, 11, 847. https://doi.org/10.1002/(SICI)1521-4095(199907)11:10<847::AID-ADMA847>3.0.CO;2-B
- Sun, X.; Chen, X.; Li, Y. Inorg. Chem. 2002, 41, 4996. https://doi.org/10.1021/ic0257827
- Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.;Rodriguez, M. A.; Konish, K.; Xu, H. Nat. Mater. 2003, 2, 821. https://doi.org/10.1038/nmat1014
- Zhang, Y. X.; Li, G. H.; Jin, Y. X.; Zhang, Y.; Zhang, J.; Zhang, L.D. Chem. Phys. Lett. 2002, 365, 300. https://doi.org/10.1016/S0009-2614(02)01499-9
- Du, G. H.; Chen, Q.; Che, R. C.; Yuan, Z. Y.; Peng, L. M. Appl.Phys. Lett. 2001, 79, 3702. https://doi.org/10.1063/1.1423403
- Chen, Q.; Zhou, W.; Du, G.; Peng, L. Adv. Mater. 2002, 14, 1208. https://doi.org/10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0
- Miao, Z.; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. NanoLett. 2002, 2, 717. https://doi.org/10.1021/nl025541w
- Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.;Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78,1125. https://doi.org/10.1063/1.1350959
- Hoyer, P. Langmuir 1996, 12, 1411. https://doi.org/10.1021/la9507803
- Zhang, X. Y.; Zhang, L. D.; Chen, W.; Meng, G. W.; Zheng, M. J.;Zhao, L. X. Chem. Mater. 2001, 13, 2511. https://doi.org/10.1021/cm0007297
- Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K.Langmuir 1998, 14, 3160. https://doi.org/10.1021/la9713816
- Limmer, S. J.; Cao, G. Adv. Mater. 2003, 15, 427. https://doi.org/10.1002/adma.200390099
- Li, D.; Xia, Y. Nano Lett. 2003, 3, 555. https://doi.org/10.1021/nl034039o
- Feist, T. P.; Davies, P. K. J. Solid State Chem. 1992, 101, 275. https://doi.org/10.1016/0022-4596(92)90184-W
- Anderson, S.; Wadsley, A. D. Acta Crystallogr. 1961, 14, 1245. https://doi.org/10.1107/S0365110X61003636
- Zhang, W. F.; He, Y. L.; Zhang, M. S.; Yin, Z.; Chen, Q. J. Phys.D: Appl. Phys. 2000, 33, 912. https://doi.org/10.1088/0022-3727/33/8/305
- Choi, H. C.; Jung, Y. M.; Kim, S. B. Bull. Korean Chem. Soc.2004, 25, 426. https://doi.org/10.1007/s11814-008-0072-8
- Bersani, D.; Lottici, P. P.; Ding, X. Z. Appl. Phys. Lett. 1998, 72,73. https://doi.org/10.1063/1.120648
- Lagarec, K.; Desgreniers, S. Solid State Commun. 1995, 94, 519. https://doi.org/10.1016/0038-1098(95)00129-8
- Parker, J. C.; Siegel, R. W. Appl. Phys. Lett. 1990, 57, 943. https://doi.org/10.1063/1.104274
Cited by
- H2Ti6O13, a new protonated titanate prepared by Li+/H+ ion exchange: synthesis, crystal structure and electrochemical Li insertion properties vol.2, pp.8, 2012, https://doi.org/10.1039/c2ra01134d
- One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications vol.37, pp.1, 2012, https://doi.org/10.1080/10408436.2011.606512
- Molten salt synthesis of Na2Ti3O7 and Na2Ti6O13 one-dimensional nanostructures and their photocatalytic and humidity sensing properties vol.15, pp.17, 2013, https://doi.org/10.1039/c3ce27092k
- nanoarrays and their photoelectrochemical properties vol.6, pp.22, 2014, https://doi.org/10.1039/C4NR04735D
- Probing the Highly Efficient Electron Transfer Dynamics between Zinc Protoporphyrin IX and Sodium Titanate Nanosheets vol.120, pp.36, 2016, https://doi.org/10.1021/acs.jpca.6b06363
- Hydrothermal synthesis and characterisation of potassium/sodium titanate nanofibres at different temperatures vol.7, pp.7, 2012, https://doi.org/10.1049/mnl.2012.0376
- Large-Scale Synthesis and Characterization of TiO2-Based Nanostructures on Ti Substrates vol.16, pp.10, 2006, https://doi.org/10.1002/adfm.200500464
- Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells vol.19, pp.9, 2008, https://doi.org/10.1088/0957-4484/19/9/095604
- Rietveld refinement of sol–gel Na2Ti6O13 and its photocatalytic performance on the degradation of methylene blue vol.47, pp.2, 2008, https://doi.org/10.1007/s10971-008-1790-4
- Morphological control of vertically self-aligned nanosheets formed on magnesium alloy by surfactant-free hydrothermal synthesis vol.11, pp.11, 2009, https://doi.org/10.1039/b907490b
- Hierarchical Titanate Nanostructures through Hydrothermal Treatment of Commercial Titania Powders vol.635, pp.3, 2009, https://doi.org/10.1002/zaac.200801322
- Size- and Shape-Dependent Transformation of Nanosized Titanate into Analogous Anatase Titania Nanostructures vol.128, pp.25, 2006, https://doi.org/10.1021/ja0607483
- Novel Phosphotungstate-titania Nanocomposites from Aqueous Media vol.28, pp.7, 2004, https://doi.org/10.5012/bkcs.2007.28.7.1097
- A Study on the Crystalline Structure of Sodium Titanate Nanobelts Prepared by the Hydrothermal Method vol.114, pp.18, 2010, https://doi.org/10.1021/jp101482k
- PbS/CdS nanocrystal-sensitized titanate network films: enhanced photocatalytic activities and super-amphiphilicity vol.20, pp.45, 2004, https://doi.org/10.1039/c0jm02111c
- Insight into the channel ion distribution and influence on the lithium insertion properties of hexatitanates A2Ti6O13 (A = Na, Li, H) as candidates for anode materials vol.41, pp.48, 2004, https://doi.org/10.1039/c2dt31665j