DOI QR코드

DOI QR Code

Interlamellar Silylation of Montmorillonite with 3-Aminopropyltriethoxysilane

  • Park, Kyeong-Won (Department of Chemistry, Gyeongsang National University) ;
  • Kwon, Oh-Yun (Department of Chemical Engineering, Yosu National University)
  • Published : 2004.07.20

Abstract

H-montmorillonite was modified by interlayer surface silylation using 3-aminopropyltriethoxysilane and dodecylamine in ethanol without a pre-swelling step. Dodecylamine acts as a gallery expander and silylation catalyst. The evaporation of ethanol from the dispersion yields well-ordered silylated montmorillonites with large basal spacing between 1.50 and 4.20 nm. Solid-state $^29Si$ CP MAS NMR of the silylated samples showed $Q^2\;and\;Q^3$ signals as well as $T^2\;and\;T^3$ signals. The increase in the relative intensity of $Q^3\;for\;Q^2$ and the appearance of $T^2\;and\;T^3$ signals was attributed to the grafting of 3-aminopropyltriethoxysilane to the interlayer surface silanol groups.

Keywords

References

  1. Plueddemann, E. P. Silane Coupling Agents; Pleenum: New York, 1982.
  2. Sung, C. S. P.; Lee, S. H.; Sung, N. H. Polym. Sci. Technol. 1980, 12B, 757.
  3. Kulkarni, R. D.; Goodard, E. D. Int. J. Adhes. Adhes. 1980, 1, 73. https://doi.org/10.1016/0143-7496(80)90061-5
  4. Furukawa, T.; Eib, N. K.; Mittal, K. L.; Anderson, H. R. J. Colloid Interface Sci. 1983, 96, 322. https://doi.org/10.1016/0021-9797(83)90037-1
  5. Alexander, J. D.; Gent, A. N.; Henriksen, P. N. J. Chem. Phys. 1985, 83, 5981. https://doi.org/10.1063/1.449631
  6. Pesek, J. J. In Chemically Modified Oxide Surfaces; Leyden, D. E., Collins, W. T., Eds.; Gordon & Breach: New York, U. S. A., 1990; Vol. 3, p 93.
  7. Kwon, O. Y.; Park, K. W. Bull. Korean Chem. Soc. 2003, 24, 1561. https://doi.org/10.5012/bkcs.2003.24.11.1561
  8. Kwon, O. Y.; Park, K. W. Bull. Korean Chem. Soc. 2004, 25, 25. https://doi.org/10.1007/s11814-008-0005-6
  9. Kim, J. W.; Liu, F.; Choi, H. J. J. Ind. Eng. Chem. 2002, 8, 399. https://doi.org/10.1021/i500005a001
  10. Kwon, O. Y.; Park, K. W. J. Ind. Eng. Chem. 2004, 10, 252. https://doi.org/10.1021/ie50099a032
  11. Ruiz-Hitzky, E.; Rojo, J. M. Nature 1980, 287, 28. https://doi.org/10.1038/287028a0
  12. Ruiz-Hitzky, E.; Rojo, J. M.; Lagaly, G. Colloid Polym. Sci. 1985, 263, 1025. https://doi.org/10.1007/BF01410996
  13. Tunny, J. M.; Detellier, C. Chem. Mater. 1993, 5, 747. https://doi.org/10.1021/cm00030a002
  14. Ogawa, M.; Okutomo, S.; Kuroda, K. J. Am. Chem. Soc. 1998, 120, 7361. https://doi.org/10.1021/ja981055s
  15. Isoda, K.; Kuroda, K.; Ogawa, M. Chem. Mater. 2000, 12, 1702. https://doi.org/10.1021/cm0000494
  16. Shimojima, A.; Mochizuki, D.; Kuroda, K. Chem. Mater. 2001, 13, 3603. https://doi.org/10.1021/cm010103w
  17. Thiesen, P. H.; Beneke, K.; Lagaly, G. J. Mater. Chem. 2002, 12, 3010. https://doi.org/10.1039/b204314a
  18. Impens, N. R. E. N.; Vort, V. P.; Vansant, E. F. Microporous and Mesoporous Mater. 1999, 28, 217. https://doi.org/10.1016/S1387-1811(98)00239-X
  19. Mukkanti, K.; Subba Rao, Y. V.; Choudary, B. M. Tetrahedron Letters 1989, 30, 251. https://doi.org/10.1016/S0040-4039(00)95173-6
  20. Gillery, F. H. Am. Mineralog. 1959, 44, 806.
  21. Thompson, A. R.; Botto, R. E. Energy & Fuels 2001, 15, 176. https://doi.org/10.1021/ef000195w
  22. Carrado, K. A.; Xu, L.; Gregory, D. M.; Song, K.; Seifert, S.; Botto, R. E. Chem. Mater. 2000, 12, 3052. https://doi.org/10.1021/cm000366a
  23. Caravajal, G. S.; Leyden, D. E.; Quinting, G. R.; Maciel, G. E. Anal. Chem. 1988, 60, 1776. https://doi.org/10.1021/ac00168a027

Cited by

  1. Surface modification of synthetic clay aimed at biomolecule adsorption: synthesis and characterization vol.10, pp.1, 2007, https://doi.org/10.1590/S1516-14392007000100009
  2. Colon-Specific Drug Delivery Behavior of pH-Responsive PMAA/Perlite Composite vol.11, pp.4, 2010, https://doi.org/10.3390/ijms11041546
  3. Physico-Chemical Properties of Imogolite Nanotubes Functionalized on Both External and Internal Surfaces vol.116, pp.13, 2012, https://doi.org/10.1021/jp301177q
  4. Surface Modification of Colloidal Silica Nanoparticles: Controlling the size and Grafting Process vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2747
  5. An exfoliated clay-poly(norbornene) nanocomposite prepared by metal-mediated surface-initiated polymerization vol.55, pp.10, 2015, https://doi.org/10.1002/pen.24123
  6. Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: a brief overview vol.3, pp.9, 2016, https://doi.org/10.1039/C6QI00179C
  7. Silica-encapsulated CdTe/MPA quantum dots: microstructural, thermal, and chemical stability characterization vol.19, pp.7, 2017, https://doi.org/10.1007/s11051-017-3947-y
  8. Effect of the organic groups of difunctional silanes on the preparation of coated clays for olefin polymer modification vol.45, pp.04, 2010, https://doi.org/10.1180/claymin.2010.045.4.489
  9. Loading and delivery of sertraline using inorganic micro and mesoporous materials vol.66, pp.3, 2004, https://doi.org/10.1016/j.ejpb.2006.11.023
  10. The modified clay performance in adsorption process of Pb2+ ions from aqueous phase—Thermodynamic study vol.322, pp.1, 2008, https://doi.org/10.1016/j.colsurfa.2008.02.024
  11. Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane vol.121, pp.1, 2004, https://doi.org/10.1016/j.micromeso.2009.02.002
  12. Sodium alginate films modified by raw and functionalized attapulgite for use of thorium(IV) adsorption: A thermodynamic approach vol.70, pp.11, 2009, https://doi.org/10.1016/j.jpcs.2009.08.012
  13. RETRACTED: Application of modified attapulgites as adsorbents for uranyl uptake from aqueous solution-Thermodynamic approach vol.88, pp.1, 2004, https://doi.org/10.1016/j.psep.2009.10.002
  14. Influence of Reaction Conditions on the Grafting Pattern of 3-Glycidoxypropyl trimethoxysilane on Montmorillonite vol.34, pp.1, 2004, https://doi.org/10.5012/bkcs.2013.34.1.112
  15. Treatment of Methylene Blue and Methyl Orange Dyes in Wastewater by Grafted Titania Pillared Clay Membranes vol.12, pp.3, 2004, https://doi.org/10.2174/1872210512666181029155352
  16. Organically modified activated bentonites for the reversible capture of CO2 vol.290, pp.None, 2004, https://doi.org/10.1016/j.micromeso.2019.109652