DOI QR코드

DOI QR Code

Nitration of Aromatic Compounds on Silica Sulfuric Acid

  • Published : 2004.09.20

Abstract

Keywords

References

  1. Min, S.; Shi-Cong, C. J. Fluorine Chem. 2002, 113, 207. https://doi.org/10.1016/S0022-1139(01)00551-6
  2. Esakkidurai, T.; Pitchumani, K. J. Mol. Cat. A: Chemical 2002,185, 305. https://doi.org/10.1016/S1381-1169(02)00135-8
  3. Iranpoor, N.; Firouzabadi, H.; Heydari, R. Synth. Commun. 1999,29, 3295. https://doi.org/10.1080/00397919908085957
  4. Zolfigol, M. A.; Ghaemi, E.; Madrakian, E. Synlett 2003, 191 andreferences cited therein.
  5. Kogelbauer, A.; Vassena, D.; Prins, R.; Armor, J. N. CatalysisToday 2000, 55, 151. https://doi.org/10.1016/S0920-5861(99)00234-5
  6. Dagade, S. P.; Waghmode, S. B.; Kadam,V. S.; Dongare, M. K. Applied Catalysis A 2002, 226, 49. https://doi.org/10.1016/S0926-860X(01)00882-1
  7. Riego, J. M.; Sedin, Z.; Zaldivar, J. M.; Marziano, N. C.; Tortato,C. Tetrahedron Lett. 1996, 37, 513. https://doi.org/10.1016/0040-4039(95)02174-4
  8. Peng, X.; Suzuki, H.; LU, C. Tetrahedron Lett. 2001, 42, 4357. https://doi.org/10.1016/S0040-4039(01)00750-X
  9. Dagade, S. P.; Waghmode, S. B.; Kadam, V. S.; Dongare, M. K.Applied Catalysis A 2002, 226, 49. https://doi.org/10.1016/S0926-860X(01)00882-1
  10. Radoslaw, R. B.; Andrew, J. S. Tetrahedron Lett. 2001, 42, 6767. https://doi.org/10.1016/S0040-4039(01)01378-8
  11. Iranpoor, N.; Firouzabadi, H.; Heydari, R. Phosphorus, Sulfur andSilicon 2003, 178, 1027. https://doi.org/10.1080/10426500307863
  12. Rodrigues, J. A. R.; Oliveira Filho, A. P.; Moran, P. J. S.;Custodio, R. Tetrahedron 1999, 55, 6733. https://doi.org/10.1016/S0040-4020(99)00320-8
  13. Rodrigues, J. A. R.; Oliveira Filho, A. P.; Moran, P. J. S. Synth.Commun. 1999, 29, 2169. https://doi.org/10.1080/00397919908086213
  14. Delaude, L.; Laszlo, P.; Smith, K. Acc. Chem. Res. 1993, 26,607. https://doi.org/10.1021/ar00036a001
  15. Laszlo, P. Acc. Chem. Res. 1986, 19, 121. https://doi.org/10.1021/ar00124a004
  16. Cornelis,A.; Laszlo, P.; Pennetreau, P. Bull. Soc. Chim. Belg. 1984, 93, 961. https://doi.org/10.1002/bscb.19840931106
  17. Zolfigol, M. A.; Iranpoor, N.; Firouzabadi, H. Orient. J. Chem.1998, 14, 369.
  18. Firouzabadi, H.; Iranpoor, N.; Zolfigol, M. A.Iran. J. Chem. & Chem. Eng. 1997, 16, 48.
  19. Firouzabadi, H.;Iranpoor, N.; Zolfigol, M. A. Synth. Commun. 1997, 27, 3301. https://doi.org/10.1080/00397919708005630
  20. Iranpoor, N.; Firouzabadi, H.; Zolfigol, M. A. Synth. Commun.1998, 28, 2773. https://doi.org/10.1080/00397919808004851
  21. Zolfigol, M. A.; Bagherzadeh, M.; Madrakian, E.; Ghaemi, E.;Taqian-nasab, A. J. Chem. Res(S). 2001, 140.
  22. Zolfigol, M. A.;Madrakian, E.; Ghaemi, E. Indian J. Chem. 2001, 40B, 1191.
  23. Zolfigol, M. A.; Ghaemi, E.; Madrakian, E. Molecules 2001, 6,614. https://doi.org/10.3390/60700614
  24. Zolfigol, M. A.; Ghaemi, E.; Madrakian, E. Molecules2002, 7, 734. https://doi.org/10.3390/71000734
  25. Crivello, J. V. J. Org. Chem. 1981, 46, 3056. https://doi.org/10.1021/jo00328a013
  26. Poirier, J. M.; Vottero, C. Tetrahedron 1989, 45, 1415. https://doi.org/10.1016/0040-4020(89)80139-5
  27. Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025. https://doi.org/10.1021/cr940089p
  28. Krchnak,V.; Holladay, M. W. Chem. Rev. 2002, 102, 61. https://doi.org/10.1021/cr010123h
  29. Varma, R. S.Green Chem. 1999, 1, 43. https://doi.org/10.1039/a808223e
  30. Zolfigol, M. A. Tetrahedron 2001, 57, 9509. https://doi.org/10.1016/S0040-4020(01)00960-7
  31. Mirjalili, B. F.;Zolfigol, M. A.; Bamoniri, A. J. Korean Chem. Soc. 2001, 45,546.
  32. Zolfigol, M. A.; Bamoniri, A. Synlett 2002, 1621.
  33. Mirjalili, B. F.; Zolfigol, M. A.; Bamoniri, A. Molecules 2002, 7,751. https://doi.org/10.3390/71000751
  34. Zolfigol, M. A.; Shirini, F.; Ghorbani-Choghamarani, A.;Mohammadpoor-Baltork, I. Green Chem. 2002, 4, 562. https://doi.org/10.1039/b208328k
  35. Salehi,P.; Dabiri, M.; Zolfigol, M. A.; Bodaghi-fard, M. A. TetrahedronLett. 2003, 44, 2889. https://doi.org/10.1016/S0040-4039(03)00436-2
  36. Zolfigol, M. A.; Chehardoli, G. A.;Mallakpour, S. E. Synth. Commun. 2003, 33, 833. https://doi.org/10.1081/SCC-120016329
  37. Mirjalili, B.F.; Zolfigol, M. A.; Bamoniri, A.; Zarei, A. Bull. Korean Chem.Soc. 2003, 24, 400. https://doi.org/10.5012/bkcs.2003.24.3.400
  38. Zolfigol, M. A.; Ghorbani-Choghamarani,A. Phosphorus, Sulfur and Silicon 2003, 178, 1623. https://doi.org/10.1080/10426500307868
  39. Shirini, F.;Zolfigol, M. A.; Mohammadi, K. Phosphorus, Sulfur and Silicon2003, 178, 1617. https://doi.org/10.1080/10426500307877
  40. Mirjalili, B. F.; Zolfigol, M. A.; Bamoniri,A.; Zarei, A. Phosphorus, Sulfur and Silicon 2003, 178, 1845. https://doi.org/10.1080/10426500307835
  41. Dictionary of Organic Compounds, 3th Ed.; Eyre andSpottiswoode: London, 1965.

Cited by

  1. Silica Sulfuric Acid as a Reusable Catalyst for Efficient and Simple Silylation of Hydroxyl Groups Using Hexamethyldisilazane (HMDS) vol.182, pp.7, 2007, https://doi.org/10.1080/10426500701289781
  2. Regioselective and green synthesis of nitro aromatic compounds using polymer-supported sodium nitrite/KHSO4 vol.120, pp.5, 2011, https://doi.org/10.1002/app.33274
  3. An efficient method for nitration of aromatic compounds over solid acid and polymer-supported sodium nitrite vol.121, pp.1, 2011, https://doi.org/10.1002/app.33679
  4. vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1279
  5. in Acidic Media vol.77, pp.7, 2012, https://doi.org/10.1021/jo300137w
  6. Catalytic Synthesis of Pyrano- and Furoquinolines Using Nano Silica Chromic Acid at Room Temperature vol.2013, pp.2090-2018, 2013, https://doi.org/10.1155/2013/693763
  7. One-pot, two-step desymmetrization of symmetrical benzils catalyzed by the methylsulfinyl (dimsyl) anion vol.12, pp.30, 2014, https://doi.org/10.1039/C4OB00759J
  8. Improved Regioselective Di-nitration of Biphenyl over Reusable HBEA-500 Zeolite vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1241
  9. Energetic salts prepared from phenolate derivatives vol.38, pp.8, 2014, https://doi.org/10.1039/C4NJ00533C
  10. Nano silica boron sulfuric acid as a dual Brønsted/Lewis acid and a heterogeneous catalyst in Baeyer–Villiger oxidation of ketones with hydrogen peroxide vol.116, pp.1, 2015, https://doi.org/10.1007/s11144-015-0884-6
  11. Poly(4-vinylpyridine)-nitrating mixture complex (PVP-NM): solid nitrating mixture equivalent for safe and efficient aromatic nitration vol.17, pp.6, 2015, https://doi.org/10.1039/C5GC00458F
  12. Regioselective mononitration of biphenyl by use of stoichiometric quantities of nitrogen dioxide and molecular oxygen over rare earth cation-exchanged β-zeolite catalysts vol.41, pp.12, 2015, https://doi.org/10.1007/s11164-015-1954-0
  13. Zeolite-assisted nitration of biphenyl using nitric acid vol.41, pp.2, 2015, https://doi.org/10.1007/s11164-013-1238-5
  14. CuO/aluminosilicate as an efficient heterogeneous nanocatalyst for the synthesis and sequential one-pot functionalization of 5-substituted-1H-tetrazoles vol.122, pp.1, 2017, https://doi.org/10.1007/s11144-017-1211-1
  15. Highly efficient protocol for the aromatic compounds nitration catalyzed by magnetically recyclable core/shell nanocomposite vol.14, pp.2, 2017, https://doi.org/10.1007/s13738-016-0996-6
  16. Nitration of Aromatic Compounds on Silica Sulfuric Acid. vol.36, pp.9, 2005, https://doi.org/10.1002/chin.200509060
  17. Facile and Efficient Selective Mono-nitration of Phenols under Solvent-free Conditions vol.27, pp.7, 2004, https://doi.org/10.5012/bkcs.2006.27.7.1056
  18. Facile and Efficient Pinacol Rearrangement Using Tungstophosphoric Acid (H3PW12O40) under Solvent-free Conditions vol.27, pp.8, 2004, https://doi.org/10.5012/bkcs.2006.27.8.1246
  19. Dynamics and Orientation of Parathion Dissolved in a Discotic Nematic Lyomesophase vol.61, pp.12, 2008, https://doi.org/10.1071/ch08209
  20. Al(H2PO4)3: An efficient catalyst for nitration of organic compounds with nitric acid vol.9, pp.5, 2008, https://doi.org/10.1016/j.catcom.2007.09.020
  21. Acid phosphate-impregnated titania-catalyzed nitration of aromatic compounds with nitric acid vol.343, pp.1, 2008, https://doi.org/10.1016/j.apcata.2008.03.024
  22. Rapid and efficient diazotization and diazo coupling reactions on silica sulfuric acid under solvent-free conditions vol.81, pp.3, 2004, https://doi.org/10.1016/j.dyepig.2008.10.011
  23. A Mild Procedure for the Preparation of o‐Nitrophenols by Nitro Urea or Ammonium Nitrate in the Presence of Silica Sulfuric Acid (SiO2‐OSO3H) vol.29, pp.4, 2004, https://doi.org/10.1002/cjoc.201190148
  24. Metal-Free Oxidation of Alcohols to Their Corresponding Carbonyl Compounds Using NH4NO3/Silica Sulfuric Acid vol.33, pp.7, 2004, https://doi.org/10.5012/bkcs.2012.33.7.2149
  25. Acid-Catalyzed Regioselective Nitration of o-Xylene to 4-Nitro-o-xylene with Nitrogen Dioxide: Brønsted Acid Versus Lewis Acid vol.44, pp.14, 2004, https://doi.org/10.1080/00397911.2013.873468
  26. In search of efficient catalysts and appropriate reaction conditions for gas phase nitration of benzene vol.2016, pp.3, 2004, https://doi.org/10.1016/j.reffit.2016.07.004
  27. Nitration of aromatics with dinitrogen pentoxide in a liquefied 1,1,1,2-tetrafluoroethane medium vol.11, pp.42, 2004, https://doi.org/10.1039/d1ra04536a
  28. Facile and Efficient Nitration of 4‐Aryl‐1( 2H )‐Phthalazinone Derivatives Using Different Catalysts vol.6, pp.41, 2004, https://doi.org/10.1002/slct.202102057