DOI QR코드

DOI QR Code

Crystal Structures and Magnetic Properties of Sparteinium Tetrahalocuprate Monohydrate Compounds

  • Lee, Yong-Min (Department of Chemistry and the Chemistry Institute for Functional Materials, Pusan National University) ;
  • Park, Sung-Min (Department of Chemistry and the Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kang, Sung-Kwon (Department of Chemistry, Chungnam National University) ;
  • Kim, Young-Inn (Department of Chemistry Education, Pusan National University) ;
  • Choi, Sung-Nak (Department of Chemistry and the Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2004.06.20

Abstract

The crystal structures of sparteinium tetrachlorocuprate monohydrate $[(C_{15}H_{28}N_2)CuCl_4{\cdot}H_2O]$, 1 and sparteinium tetrabromocuprate monohydrate $[(C_{15}H_{28}N_2)CBr_4{\cdot}H_2O]$, 2, were determined. The structures of 1 [orthorhombic, $P2_12_12_1$, a = 8.3080(10) ${\AA}$, b = 14.6797(19) ${\AA}$ and c = 16.4731(17) ${\AA}$], and 2 [orthorhombic, $P2_12_12_1$, a = 8.4769(7) ${\AA}$, b = 15.166(3) ${\AA}$ and c = 16.679(3) ${\AA}$], are composed of a doubly protonated sparteinium cation, $[C_{15}H_{28}N_2]^{2+}$, a discrete $CuX_4^{2-}$ anion $(X=Cl^-\;or\;Br^-)$, and one water molecule. These monomeric compounds are stabilized through various types of hydrogen bonding interaction in their packing structures. Crystal 2 exhibits weak anti-ferromagnetism (J = -3.24 $cm^{-1}$) as opposed to the magnetically isolated paramagnetism observed for 1. The results of comparative magneto-structural investigations of 1 and 2 suggest that the pathway for the weak anti-ferromagnetic super-exchange in 2 might be through a Cu-Br${\cdots}$Br-Cu contact.

Keywords

References

  1. Desjardins, S. R.; Penfield, K. W.; Cohen, S. L.; Musselman, R.L.; Solomon, E. I. J. Am. Chem. Soc. 1983, 105, 4590. https://doi.org/10.1021/ja00352a014
  2. McDonald, R. G.; Riley, M. J.; Hitchman, M. A. Inorg. Chem.1988, 27, 894. https://doi.org/10.1021/ic00278a029
  3. Straatman, P.; Block, R.; Jansen, L. Phys. Rev. B 1984, 29, 1415. https://doi.org/10.1103/PhysRevB.29.1415
  4. Halvorson, K. E.; Patterson, C.; Willett, R. D. Acta Cryst. B 1990,46, 508. https://doi.org/10.1107/S010876819000338X
  5. Llopis, M. J.; Alzuet, G.; Martin, A.; Borras, J.; Garcia-Granda,S.; Diaz, R. Polyhedron 1993, 12, 2499. https://doi.org/10.1016/S0277-5387(00)83075-2
  6. Weselucha-Birczynska, A.; Oleksyn, B.; Paluszkiewicz, C.;Sliwinski, J. J. Mol. Struct. 1999, 511-512, 301. https://doi.org/10.1016/S0022-2860(99)00172-6
  7. Bontchev, P. R.; Ivanova, B. B.; Bontchev, R. P.; Mehandjiev, D.R. Polyhedron 2001, 20, 231. https://doi.org/10.1016/S0277-5387(00)00639-2
  8. Valdes-Martinez, J.; Alstrum-Acevedo, J. H.; Toscano, R. A.;Hernandez-Ortega, S.; Espinosa-Perez, G.; West, D. X.; Helfrich,B. Polyhedron 2002, 21, 409. https://doi.org/10.1016/S0277-5387(01)01006-3
  9. Kim, Y. I.; Lee, Y. M.; Kang, S. K.; Choi, S. N. Bull. KoreanChem. Soc. 2002, 23, 1321. https://doi.org/10.5012/bkcs.2002.23.9.1321
  10. Snively, L. O.; Haines, D. N.; Emerson, K.; Drumheller, J. E.Phys. Rev. B 1982, 26, 5245. https://doi.org/10.1103/PhysRevB.26.5245
  11. Long, G. S.; Wei, M.; Willett, R. D. Inorg. Chem. 1997, 36,3102. https://doi.org/10.1021/ic960849+
  12. Landee, C. P.; Turnbull, M. M.; Galeriu, C.; Giantsidis, J.;Woodward, F. M. Phys. Rev. B 2001, 63, 100402/1.
  13. Marzotto, A.; Clemente, D. A.; Benetollo, F.; Valle, G. Polyhedron2001, 20, 171. https://doi.org/10.1016/S0277-5387(00)00604-5
  14. Luque, A.; Sertucha, J.; Castillo, O.; Romàn, P. Polyhedron 2002,21, 19. https://doi.org/10.1016/S0277-5387(01)00961-5
  15. Escrivá, E.; Server-Carrio, J.; Garcia-Lozano, J.; Folgado, J.-V.;Sapina, F.; Lezama, L. Inorg. Chim. Acta 1998, 279, 58. https://doi.org/10.1016/S0020-1693(98)00037-1
  16. Rubenaker, G. V.; Walpak, S.; Hutton, S. R.; Haines, D. N.;Drumheller, J. E. J. Appl. Phys. 1985, 57, 3341. https://doi.org/10.1063/1.335089
  17. Lee, Y. M.; Kim, Y. K.; Jeong, H. C.; Kim, Y. I.; Choi, S. N. Bull. Korean Chem. Soc. 2002, 23, 404. https://doi.org/10.5012/bkcs.2002.23.3.404
  18. Enraf-Nonius CAD-4 Software; version 5.0; Delft: The Netherlands,1989.
  19. Enraf-Nonius CAD4 Express; Delft: The Netherlands, 1994.
  20. Harms, K.; Wocadlo, S. XCAD4, Program for Processing CAD-4Diffractometer Data; University of Marburg: Germany, 1995.
  21. Sheldrick, G. M. SHELXL97 and SHELXS97, Program forRefinement of Crystal Structures; University of Göttingen: Germany,1997.
  22. Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.
  23. Lee, Y.-M.; Shim, Y.-B.; Lee, S. J.; Kang, S. K.; Choi, S.-N. ActaCryst. C 2002, 58, o733. https://doi.org/10.1107/S0108270102020425
  24. Boczon, W.; Koziol, B. J. Mol. Struct. 1997, 403, 171. https://doi.org/10.1016/S0022-2860(96)09443-4
  25. Hall, J. W. PhD. Dissertation; University of North Carolina:Chapel Hill, NC, USA, 1977.
  26. Bonner, J. C.; Fisher, M. E. Phys. Rev. A 1964, 135, 640. https://doi.org/10.1103/PhysRev.135.A640
  27. Pauling, L. The Nature of Chemical Bonding, 3rd Ed.; CornellUniv. Press: Ithaca, 1960; p 260.
  28. Straatman, P.; Block, R.; Jansen, L. Phys. Rev. B 1984, 29, 1415. https://doi.org/10.1103/PhysRevB.29.1415
  29. Hatfield, W. E.; Jones Jr., E. R. Inorg. Chem. 1970, 9, 1502. https://doi.org/10.1021/ic50088a039

Cited by

  1. -isosparteine complexes with copper(II) sulfate vol.60, pp.22, 2007, https://doi.org/10.1080/00958970701272110
  2. Bis(3-methylpyridinium) tetra(chlorido/bromido)cuprate(II) vol.67, pp.6, 2011, https://doi.org/10.1107/S1600536811019076
  3. Protonation-triggered conformational modulation of an N,N′-dialkylbispidine: first observation of the elusive boat–boat conformer vol.11, pp.37, 2013, https://doi.org/10.1039/c3ob41122b
  4. 1-(2,3-Dimethylphenyl)piperazine-1,4-diium tetrachloridocuprate(II) vol.69, pp.9, 2013, https://doi.org/10.1107/S1600536813021454
  5. vol.70, pp.23, 2017, https://doi.org/10.1080/00958972.2017.1413183
  6. Indolizidine and quinolizidine alkaloids vol.24, pp.1, 2007, https://doi.org/10.1039/b509525p
  7. Transition metal complexes of 2-amino-3,5-dihalopyridines: Syntheses, structures and magnetic properties of (3,5-diCAPH)2CuX4 and (3,5-diBAPH)2CuX4 pp.47, 2009, https://doi.org/10.1039/b914392k
  8. Crystal structure, spectroscopy and magnetism of selected (−)sparteine and α-isosparteine tetrahalocuprate salts vol.794, pp.1, 2004, https://doi.org/10.1016/j.molstruc.2006.02.057
  9. Coordination Mode of 2-Dimethylaminomethyl-3-hydroxypyridine with Nickel(II) Halides: Structural and Electrochemical Properties vol.29, pp.9, 2004, https://doi.org/10.5012/bkcs.2008.29.9.1784
  10. Variety of polymorphic forms contrasted with uniform crystal packing in sparteine ML2 complexes: Crystal structure, spectroscopic and magnetic properties of (-)-α-isosparteine and (-) vol.921, pp.1, 2004, https://doi.org/10.1016/j.molstruc.2009.01.013
  11. Transition metal halide salts of 8-methylquinolinium: Synthesis and structures of (8-methylquinolinium)2 MX4·nH2O (M=Cu, Co, Zn; X=Cl, Br; n=0, 1) vol.368, pp.1, 2004, https://doi.org/10.1016/j.ica.2010.12.070
  12. Effect of substituents and structural modification on conformational equilibrium in bis-quinolizidine system vol.1017, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2012.03.006
  13. Structures and Magnetic Properties of Monomeric Copper(II) Bromide Complexes with a Pyridine-Containing Tridentate Schiff Base vol.34, pp.12, 2004, https://doi.org/10.5012/bkcs.2013.34.12.3615
  14. Crystal structure of sparteinium tetrachlorocuprate monohydrate-packing polymorph vol.150, pp.7, 2004, https://doi.org/10.1007/s00706-019-02426-2
  15. Copper(II) Halide Salts with 1-(4′-Pyridyl)-Pyridinediium vol.8, pp.3, 2004, https://doi.org/10.3390/inorganics8030018
  16. Effect of isomeric cations of 3(2)-(chloromethyl)pyridine on the structure and properties of copper(II) and cobalt(II) complexes vol.1240, pp.None, 2004, https://doi.org/10.1016/j.molstruc.2021.130561