DOI QR코드

DOI QR Code

Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile

  • Oh, Hyuck-Keun (Department of Chemistry, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Lee, Jae-Myon (Department of Chemistry, Research Center of Bioactive Materials, Chonbuk National University)
  • Published : 2004.02.20

Abstract

The kinetics of reactions between Z-aryl thiophene-2-carbodithioates and X-pyridines in acetonitrile at 60.0 $^{\circ}C$ have been investigated. The Bronsted plots obtained for the pyridinolysis of aryl thiophene-2-carbodithioates are curved, with the center of curvature at $pK_a$ ~ 5.2 ($pK_a^{\circ}$). The Bronsted plots for these nucleophilic reactions show a change in slope from a large ( ${\beta}_X{\cong}$0.78-0.87) to a small ( ${\beta}_X{\cong}$0.33-0.35) value, which can be attributed to a change in the rate-determining step from breakdown to formation of a zwitterionic tetrahedral intermediate in the reaction path as the basicity of the pyridine nucleophile increases. A clear-cut change in the crossinteraction constants, ${\rho}_{XZ}$, from +0.92 to -0.23 supports the proposed mechanistic change. The breakpoint at $pK_a$ = 5.2 for R = thiophene ring in the present work is in agreement with those for the pyridinolysis of R = Me and 2-furyl, and attests to the insignificant effects of acyl group, R, on the breakpoint.

Keywords

References

  1. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms, Longman: Harlow, 1997; Ch. 7.
  2. Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Ch. 4.
  3. Castro, E. A. Chem. Rev. 1999, 99, 3505. https://doi.org/10.1021/cr990001d
  4. Um, I. H.; Park, H. R.; Kim, E. Y. Bull. Korean Chem. Soc. 2003, 24, 1251. https://doi.org/10.5012/bkcs.2003.24.9.1251
  5. Um, I. H.; Baek, M. H.; Han, H. J. Bull. Korean Chem. Soc. 2003, 24, 1245. https://doi.org/10.5012/bkcs.2003.24.9.1245
  6. Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Chem. Soc., Perkin Trans. 2 1991, 1919.
  7. Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Org. Chem. 1992, 57, 7024. https://doi.org/10.1021/jo00052a010
  8. Cabrera, M.; Castro, E. A.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1991, 56, 5324. https://doi.org/10.1021/jo00018a022
  9. Castro, E. A.; Cubillos, M.; Ibanez, F.; Moraga, I.; Santos, J. G. J. Org. Chem. 1993, 58, 5400. https://doi.org/10.1021/jo00072a022
  10. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G.; Sepulveda, P. J. Org. Chem. 1993, 58, 459. https://doi.org/10.1021/jo00054a033
  11. Um, I. H.; Lee, E. J.; Lee, J. P. Bull. Korean Chem. Soc. 2002, 23, 381. https://doi.org/10.5012/bkcs.2002.23.3.381
  12. Oh, H. K.; Shin, C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 1169.
  13. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park , Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  14. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Lee, I. Int. J. Chem. Kinet. 1998, 30, 849. https://doi.org/10.1002/(SICI)1097-4601(1998)30:11<849::AID-KIN7>3.0.CO;2-V
  15. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306.
  16. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313. https://doi.org/10.1039/b006974o
  17. Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2001, 1753.
  18. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995. https://doi.org/10.1021/jo0264269
  19. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874. https://doi.org/10.1021/jo025637a
  20. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 715. https://doi.org/10.5012/bkcs.2002.23.5.715
  21. Koh, H. J.; Kang, S. J.; Kim, C. J.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 925. https://doi.org/10.5012/bkcs.2003.24.7.925
  22. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983,453.
  23. Castro, E. A.; Salas, M.; Santos, J. G. J. Org. Chem. 1994, 59, 30 https://doi.org/10.1021/jo00080a008
  24. Oh, H. K.; Kim, S. K.; Cho, I. H.; Lee, H. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 2000, 2306.
  25. Castro, E. A.; Pizarro, M. I.; Santos, J. G. J. Org. Chem. 1996, 61,5982. https://doi.org/10.1021/jo960781f
  26. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org.Chem. 1997, 62, 5789.
  27. Castro, E. A.; Ureta, C. J. Chem. Soc., Perkin Trans. 2 1991, 63.
  28. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. Bull. Korean Chem.Soc. 1999, 20, 1418.
  29. Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Chem. Soc.,Perkin Trans. 2 1991, 1919.
  30. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1994, 59,3572. https://doi.org/10.1021/jo00092a014
  31. Um, I. H.; Kwon, H. J.; Kwon, D. S.; Park, J. Y. J. Chem. Res.,Synop. 1995, 301.
  32. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67,3874. https://doi.org/10.1021/jo025637a
  33. Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985.
  34. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783. https://doi.org/10.1021/jo990115p
  35. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  36. Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69. https://doi.org/10.1016/S0065-3160(08)60108-2
  37. Buncel, E.; Wilson, H. J. Chem. Educ. 1987, 64, 475. https://doi.org/10.1021/ed064p475
  38. Koh, H. J.; Lee, I.; Lee, H. W. Can. J. Chem. 1998, 76, 710. https://doi.org/10.1139/cjc-76-6-710

Cited by

  1. in DMF vol.46, pp.1, 2014, https://doi.org/10.1002/kin.20822