DOI QR코드

DOI QR Code

UO22+ Ion-Selective Membrane Electrode Based on a Naphthol-Derivative Schiff's Base 2,2'-[1,2-Ethandiyl bis(nitriloethylidene)]bis(1-naphthalene)

  • Published : 2004.05.20

Abstract

A new PVC membrane electrode for $UO_2^{2+}$ ion based on 2,2'-[1,2-ethanediyl bis (nitriloethylidene)]bis(1-naphthalene) as a suitable ionophore was prepared. The electrode exhibites a Nernstian response for $UO_2^{2+}$ ion over a wide concentration range ($1.0{\times}10^{-1}-1.0{\times}10^{-7}$M) with a slope of 28.5 ${\pm}$ 0.8 mV/decade. The limit of detection is $7.0{\times}10^{-8}$M. The electrode has a response time of < 20 s and a useful working pH range of 3-4. The proposed membrane sensor shows good discriminating abilities towards $UO_2^{2+}$ ion with regard to several alkali, alkaline earth transition and heavy metal ions. It was successfully used to the recovery of uranyl ion from, tap water and, as an indicator electrode, in potentiometric titration of $UO_2^{2+}$ ion with Piroxycam.

Keywords

References

  1. Moody, G. J.; Saad, B. B.; Thomas, J. D. R. Sel. Electrode Rev.1988, 10, 71.
  2. Kimura, K.; Shono, T. In Cation Binding by Macrocycles; Inoue,Y.; Gokel, G. W. Eds.; Marcel Dekker: New York, 1990.
  3. Umezawa, Y. Handbook of Ion-Selective Electrodes: SelectivityCoefficients; CRC Press: Boca Raton, FL, 1990.
  4. Buhlmann, P.; Pretsch, E.; Bakker, E. Chem. Rev. 1998, 98, 1593. https://doi.org/10.1021/cr970113+
  5. Janata, J.; Jasowicz, M.; Vanysek, P.; De-Vaney, D. M. Anal.Chem. 1998, 70, 179R. https://doi.org/10.1021/a1980010w
  6. An, H.; Bradshaw, J. S.; Izatt, R. M.; Yan, Z. Chem. Rev. 1994, 94,939. https://doi.org/10.1021/cr00028a005
  7. Jones, R. D.; Summerville, D. A.; Basolo, F. Chem. Rev. 1979, 79,139. https://doi.org/10.1021/cr60318a002
  8. Randaccio, C. M. In Compehensive Coordination Chemistry;Wilkinson, G.; Gillard, R. D.; McCleverly, M., Eds.; Oxford: London, 1987; Vol. 2, Chap. 20.
  9. Atwood, D. A. Coord. Chem. Rev. 1997, 165, 267. https://doi.org/10.1016/S0010-8545(97)90159-4
  10. Sharghi, H.; Naeimi, H. Bull. Chem. Soc. Jpn. 1999, 72, 1525. https://doi.org/10.1246/bcsj.72.1525
  11. Wei, P.; Atwood, D. A. Polyhedron 1999, 18, 641. https://doi.org/10.1016/S0277-5387(98)00312-X
  12. Martell, A. E.; Sawyer, O. T. Oxygen Complexes and OxygenActivation by Transition Metals; Plenum Press: New York, 1988.
  13. Shamsipur, M.; Soleymanpour, A.; Akhond, M.; Sharghi, H.;Naseri, M. A. Anal. Chim. Acta 2001, 450, 37. https://doi.org/10.1016/S0003-2670(01)01380-0
  14. Shamsipur, M.; Yousefi, M.; Hosseini, M.; Ganjali, M. R.;Sharghi, H.; Naeimi, H. Anal. Chem. 2001, 73, 2869. https://doi.org/10.1021/ac001449d
  15. Ganjali, M. R.; Poursaberi, T.; Basiripour, F.; Salavati-Niassari,M.; Yousefi, M.; Shamsipur, M. Fresenius J. Anal. Chem. 2001,370, 1091. https://doi.org/10.1007/s002160100915
  16. Shannon, S. S. The HSSR Program and Its Relation to the NureEffort Symposium on Hydrogeochemical and Stream-SedimentRecomaissance for Uranium in the United States; Grand Junction,Co.: 1977.
  17. Narasimha Marty, B.; Japannath, Y. Y. S.; Yadav, R. B.; Ramamurty,C. K.; Syamsundar, S. Talanta 1997, 44, 283. https://doi.org/10.1016/S0039-9140(96)02046-2
  18. Shamsipur, M.; Ghiasvand, A. R.; Yamini, Y. Anal. Chem. 1999,71, 4892. https://doi.org/10.1021/ac981229o
  19. Miller, W.; Alexander, R.; Chapman, N.; McKinley, I.; Smellie, J.;Natural Analogue Studies in the Geological Disposal ofRadioactive Wastes; Elsevier: Amsterdam, 1994.
  20. Moody, G. J.; Slater, J. M.; Thomas, J. D. R. Analyst 1988, 113,699. https://doi.org/10.1039/an9881300699
  21. Nassory, N. S. Talanta 1989, 36, 672. https://doi.org/10.1016/0039-9140(89)80261-9
  22. Johnson, S.; Moody, G. J.; Thomas, J. D. R.; Kohnke, F. H.;Stoddart, J. F. Analyst 1989, 114, 1025. https://doi.org/10.1039/an9891401025
  23. Petrukhin, O. M.; Avedeeva, E. N.; Zhukov, A. F.; Polosuchina, I.B.; Krylova, S. K.; Rogatinskaya, S. L.; Bodrin, G. V.; Nesterova,N. P.; Polikarpov, Y. M.; Kabachnik, M. I. Analyst 1991, 116, 715. https://doi.org/10.1039/an9911600715
  24. Thomas, J. D. R. Analyst 1991, 116, 1211. https://doi.org/10.1039/an9911601211
  25. Jain, A. K.; Gupta, V. K.; Khurana, U.; Singh, L. P. Electroanalysis1997, 9, 857. https://doi.org/10.1002/elan.1140091110
  26. Gupta, V. K.; Mangla, R.; Khurana, U.; Kumar, P. Electroanalysis1999, 11, 573. https://doi.org/10.1002/(SICI)1521-4109(199906)11:8<573::AID-ELAN573>3.0.CO;2-Z
  27. Florido, A.; Casas, I.; Garcia-Raurich, J.; Arad-Yellin, R.;Warshawsky, A. Anal. Chem. 2000, 72, 1604. https://doi.org/10.1021/ac990806l
  28. Shamsipur, M.; Soleymanpour, A.; Akhond, M.; Sharghi, H.;Massah, A. R. Talanta 2002, 58, 237. https://doi.org/10.1016/S0039-9140(02)00238-2
  29. Naeimi, H. Ph.D. Thesis; Shiraz University: Shiraz, Iran, 1999.
  30. van Doorn, A. R.; Bos, M.; Harkema, S.; van Eerden, J.; Verboom,W.; Reinhoudt, D. N. J. Org. Chem. 1991, 56, 2371. https://doi.org/10.1021/jo00007a023
  31. Rudkevich, D.; Verboom, W.; Brzozka, Z.; Palys, M. J.;Stauthamer, W. P. R.; van Hummel, G. J.; Franken, S. M.;Harkerma, S.; Engbersen, J. F. J.; Reinhout, D. N. J. Am. Chem.Soc. 1994, 116, 4341. https://doi.org/10.1021/ja00089a023
  32. Wroblewski, W.; Brzozka, Z.; Rudkevich, D. M.; Reinhout, D. N.Sens. Actuators B 1996, 37, 151. https://doi.org/10.1016/S0925-4005(97)80131-1
  33. Alizadeh, N.; Ershad, S.; Naeimi, H.; Sharghi, H.; Shamsipur, M.Polish J. Chem. 1999, 73, 915.
  34. Ghasemi, J.; Shamsipur, M. J. Coord. Chem. 1992, 23, 337.
  35. Ghasemi, J.; Shamsipur, M. J. Coord. Chem. 1995, 36, 183. https://doi.org/10.1080/00958979508022560
  36. Bakker, E.; Bühlmann, P.; Pretsch, E. Chem. Rev. 1997, 97,3083. https://doi.org/10.1021/cr940394a
  37. Yang, S.; Kumar, N.; Chi, H.; Hibbert, D. B.; Alexander, P. W.Electroanalysis 1997, 9, 549. https://doi.org/10.1002/elan.1140090709
  38. Schaller, U.; Bakker, E.; Spichiger, U. E.; Pretsch, E. Anal. Chem.1994, 66, 391. https://doi.org/10.1021/ac00075a013
  39. Ammann, D.; Pretsch, E.; Simon, W.; Lindner, E.; Bezegh, A.;Pungor, E. Anal. Chim. Acta 1985, 171, 119. https://doi.org/10.1016/S0003-2670(00)84189-6
  40. Eugster, R.; Spichiger, U. E.; Simon, W. Anal. Chem. 1993, 65,689. https://doi.org/10.1021/ac00054a007
  41. Rosatzin, T.; Bakker, E.; Suzuki, K.; Simon, W. Anal. Chem. Acta1993, 280, 197. https://doi.org/10.1016/0003-2670(93)85122-Z
  42. Ammann, D.; Morf, W. E.; Anker, P.; Meier, P. C.; Pretsch, E.;Simon, W. Ion-Sel. Electrode Rev. 1983, 5, 3. https://doi.org/10.1016/B978-0-08-031492-1.50005-X
  43. Gehrig, P. M.; Morf, W. E.; Weltic, M.; Pertsch, E.; Simon, W.Helv. Chim. Acta 1996, 73, 203.
  44. Cotton, C. F.; Wilkinson, G. Advanced Inorganic Chemistry;Wiley-Inter Science: New York, 1972; p 174.
  45. Umezawa, Y.; Umezawa, K.; Sato, H. Pure Appl. Chem. 1995, 67,507. https://doi.org/10.1351/pac199567030507

Cited by

  1. Supramolecular Based Membrane Sensors vol.6, pp.8, 2006, https://doi.org/10.3390/s6081018
  2. Determination of Ultra Trace Amounts of Uranium (VI) by Adsorptive Stripping Voltammetry Using L-3-(3, 4-dihydroxy phenyl) Alanine as a Selective Complexing Agent vol.41, pp.7, 2008, https://doi.org/10.1080/00032710802051967
  3. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors vol.8, pp.3, 2008, https://doi.org/10.3390/s8031645
  4. Solid phase extraction and preconcentration of Cu(II), Pb(II), and Ni(II) in environmental samples on chemically modified Amberlite XAD-4 with a proper Schiff base vol.173, pp.1-4, 2011, https://doi.org/10.1007/s10661-010-1417-4
  5. Synthesis, characterisation and application of two new lariat crown ethers in construction of PVC membrane, coated wire and coated graphite electrodes: application to flow injection potentiometry vol.91, pp.1, 2011, https://doi.org/10.1080/03067310903194998
  6. Simultaneous spectrophotometric determination of uranium and zirconium using cloud point extraction and multivariate methods vol.9, pp.3, 2012, https://doi.org/10.1007/s13738-011-0019-6
  7. Efficient, Convenient and Mild Three Component Template Preparation and Characterization of Some New Schiff Base Complexes vol.60, pp.8, 2013, https://doi.org/10.1002/jccs.201300034
  8. Ion selective electrode for uranium based on composite multiwalled carbon nanotube-benzo-15-crown-5 in PVC matrix coated on graphite rod vol.69, pp.1, 2014, https://doi.org/10.1134/S106193481401002X
  9. Construction of Uranyl Selective Electrode Based on Complex of Uranyl Ion with New Ligand Carboxybenzotriazole in PVC Matrix Membrane vol.92, pp.1757-899X, 2015, https://doi.org/10.1088/1757-899X/92/1/012023
  10. A Novel Screen-Printed and Carbon Paste Electrodes for Potentiometric Determination of Uranyl(II) Ion in Spiked Water Samples vol.54, pp.2, 2018, https://doi.org/10.1134/S1023193517110027
  11. Development of a PVC-membrane ion-selective bulk optode, for UO22+ ion, based on tri-n-octylphosphine oxide and dibenzoylmethane vol.382, pp.4, 2005, https://doi.org/10.1007/s00216-005-3225-1
  12. Synergistic flotation of U(VI)–alizarin complex with some diamines followed by spectrophotometric determination of U(VI) using 4,4′-diaminophenylmethane vol.559, pp.2, 2004, https://doi.org/10.1016/j.aca.2005.12.005
  13. A novel uranyl membrane sensor with potentiometric anionic response vol.70, pp.4, 2004, https://doi.org/10.1016/j.talanta.2006.02.005
  14. Convenient, Mild and One-Pot Synthesis of Double Schiff Bases from Three Component Reaction of Salicylaldehyde, Ammonium Acetate and Aliphatic Aldehydes Accelerated by NEt3as a Base vol.54, pp.5, 2004, https://doi.org/10.1002/jccs.200700182
  15. A novel flow injection potentiometric graphite coated ion-selective electrode for the low level determination of uranyl ion vol.589, pp.1, 2004, https://doi.org/10.1016/j.aca.2007.02.030
  16. Liquid-liquid Distribution of the Tetravalent Zirconium, Hafnium and Thorium with a New Tetradentate Naphthol-derivative Schiff Base vol.29, pp.1, 2004, https://doi.org/10.5012/bkcs.2008.29.1.094
  17. Efficient, Mild and One Pot Synthesis of N,N'-Bis(salicylidene)arylmethanediamines via Three Component Reaction under Solvent Free Conditions vol.29, pp.12, 2004, https://doi.org/10.5012/bkcs.2008.29.12.2445
  18. Selective uranyl cation detection by polymeric ion selective electrode based on benzo-15-crown-5 vol.31, pp.8, 2004, https://doi.org/10.1016/j.msec.2011.07.007
  19. Adsorptive Cathodic Stripping Voltammetric Determination of Uranium(VI) in Presence of N‐Phenylanthranilic Acid vol.26, pp.7, 2004, https://doi.org/10.1002/elan.201400107
  20. Selective and Sensitive Determination of Uranyl Ions in Complex Matrices by Ion Imprinted Polymers‐Based Electrochemical Sensor vol.27, pp.10, 2004, https://doi.org/10.1002/elan.201500317
  21. Tetrahydrosalen Uranyl(VI) Complexes: Crystal Structures and Solution Binding Study vol.2018, pp.10, 2018, https://doi.org/10.1002/ejic.201701401
  22. A review on nanomaterial-based electrochemical, optical, photoacoustic and magnetoelastic methods for determination of uranyl cation vol.186, pp.5, 2019, https://doi.org/10.1007/s00604-019-3426-5