DOI QR코드

DOI QR Code

Study of Kinetics of Bromophenol Blue Fading in the Presence of SDS, DTAB and Triton X-100 by Classical Model

  • Published : 2004.05.20

Abstract

In this paper, kinetics of reaction between Bromophenol blue (BPB) and $OH^-$, called fading, has been studied through a spectrophotometric method in the presence of nonionic Triton X-100 (TX-100), anionic sodium dodecyl sulfate (SDS) and cationic dodecyl trimethylammonium bromide (DTAB) surfactants. The influence of changes in the surfactant concentration on the observed rate constant was investigated. The results are treated quantitatively by pseudophase ion-exchange (PPIE) model and a new simple model called "classical model". The binding constants of BPB molecules to the micelles and free molecules of surfactants, their stoichiometric ratios and thermodynamic parameters of binding have been evaluated. It was found that SDS has nearly no effect on the fading rate up to 10 mM, whereas TX-100 and DTAB interact with BPB which reduce the reaction rate. By the use of fading reaction of BPB, the binding constants of SDS molecules to TX-100 micelles and their Langmuir and Freundlich adsorption isotherms were obtained and when mixtures of DTAB and TX-100 were used, no interaction was observed between these two surfactants.

Keywords

References

  1. The Merck Index, 12th Ed; p 239.
  2. Sakai, T. Analyst 1983, 108, 608. https://doi.org/10.1039/an9830800608
  3. Tananaiko, M. M.; Gorenshtein, L. I. Chemical Abstracts 1975,83, 198445d.
  4. Winans, R.; Brown, C. A. J. Chem. Educ. 1975, 52, 526. https://doi.org/10.1021/ed052p526
  5. Torimoto, N.; Shingaki, T. Chemical Abstracts 1986, 105,225405x.
  6. Chase, E. F.; Kilpatrick, M. J. Am. Chem. Soc. 1932, 54, 2284. https://doi.org/10.1021/ja01345a017
  7. Kilpatrick, M. Chem. Rev. 1935, 16, 57. https://doi.org/10.1021/cr60053a005
  8. Panepinto, F. W.; Kilpatrick, M. J. Am. Chem. Soc. 1937, 59,1871. https://doi.org/10.1021/ja01289a023
  9. Amis, E. S.; La Mer, V. K. J. Am. Chem. Soc. 1939, 61, 905. https://doi.org/10.1021/ja01873a040
  10. Chen, D. T. Y.; Laidler, K. J. Canad. J. Chem. 1959, 37, 599. https://doi.org/10.1139/v59-082
  11. Duynstee, E. F.; Grunwald, E. J. Am. Chem. Soc. 1959, 81, 4540. https://doi.org/10.1021/ja01526a025
  12. Piszkiewicz, D. J. Am. Chem. Soc. 1977, 99, 7695. https://doi.org/10.1021/ja00465a046
  13. Piszkiewicz, D. J. Am. Chem. Soc. 1977, 99, 1550. https://doi.org/10.1021/ja00447a044
  14. Hall, D. G. J. Phys. Chem. 1987, 91, 4287. https://doi.org/10.1021/j100300a018
  15. Chaimovich, H.; Alexio, R. M. V.; Cuccovia, I. M.; Zanette, D.;Quina, F. H. Solution Behaviour of Surfactants, Theoretical and Applied Aspects; Plenum: 1982; vol. 2, p 949.
  16. Romsted, L. S. J. Phys. Chem. 1985, 89, 5107. https://doi.org/10.1021/j100269a044
  17. Malpica, A.; Calzadilla, M.; Linares, H. Int. J. Chem. Kinet. 1998,30, 273. https://doi.org/10.1002/(SICI)1097-4601(1998)30:4<273::AID-KIN5>3.0.CO;2-P
  18. Tong, L. K. J.; Reeves, R. L. J. Phys. Chem. 1965, 89, 2357.
  19. Menger, F. M.; Portony, C. E. J. Am. Chem. Soc. 1967, 89, 4698. https://doi.org/10.1021/ja00994a023
  20. Rafiquee, M. Z. A.; Shah, R. A.; Kabir-ud-din; Khan, Z. Int. J.Chem. Kinet. 1997, 29, 131. https://doi.org/10.1002/(SICI)1097-4601(1997)29:2<131::AID-KIN7>3.0.CO;2-V
  21. Fernandez, G.; Munoz, M.; Rodriguez, A.; Del Mar Graciani, M.;Moya, M. L. Int. J. Chem. Kinet. 2003, 35, 45. https://doi.org/10.1002/kin.10101
  22. Kabir-ud-din; Akram, M.; Rafiquee, M. Z. A.; Khan, Z. Int. J.Chem. Kinet. 1999, 31, 47. https://doi.org/10.1002/(SICI)1097-4601(1999)31:1<47::AID-KIN6>3.0.CO;2-L
  23. Munoz, M.; Rodriguez, A.; Del Mar Graciani, M.; Moya, M. L.Int. J. Chem. Kinet. 2002, 34, 445. https://doi.org/10.1002/kin.10067
  24. Escribano, J.; Cabanes, J.; Garcia-Carmona, F. J. Sci. Food Agric.1997, 73, 34. https://doi.org/10.1002/(SICI)1097-0010(199701)73:1<34::AID-JSFA689>3.0.CO;2-#
  25. Sanchez-Ferrer, A.; Laveda, F.; Garcia-Carmona, F. J. Agric. FoodChem. 1993, 41, 1583. https://doi.org/10.1021/jf00034a010
  26. Emerson, M. F.; Holtzer, A. J. Phys. Chem. 1967, 71, 1898. https://doi.org/10.1021/j100865a057
  27. Abe, M.; Ogino, K. J. Colloid Interface Sci. 1981, 80, 58. https://doi.org/10.1016/0021-9797(81)90159-4
  28. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 2nd Ed; VCH publishers: 1988; pp 205-207.
  29. Caetano, W.; Tabak, M. J. Colloid Interface Sci. 2000, 225, 69. https://doi.org/10.1006/jcis.2000.6720
  30. Welti, R.; Mullikin, L. J.; Yoshimura, T.; Helmkamp, J. M.Biochemistry 1984, 23, 6086. https://doi.org/10.1021/bi00320a028
  31. Methods in Enzymology, Vol LVI: page 738.
  32. Matha, M.; Sundari, L. B. T.; Raiana, K. C. Int. J. Chem. Kinet.1996, 28, 637.
  33. Acharya, K. J. Photochem. Photobiol. A 1999, 122, 47. https://doi.org/10.1016/S1010-6030(99)00003-9
  34. Artola, A.; Martin, M.; Balaguer, M.; Rigola, M. J. ColloidInterface Sci. 2000, 232, 64. https://doi.org/10.1006/jcis.2000.7186
  35. Mckay, G. Use of Adsorbents for the Removal of Polluants fromWastewaters; CRC Press: Boca Raton, FL, 1996.
  36. Wang, T. Z.; Mao, S. Z.; Miao, X. J.; Zhao, S.; Yu, J. Y.; Du, Y. R.J. Colloid Interface Sci. 2001, 241, 465. https://doi.org/10.1006/jcis.2001.7744

Cited by

  1. Kinetics of Methyl Green Fading in the Presence of TX-100, DTAB and SDS vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1145
  2. Effects of Surfactants on the Rate of Chemical Reactions vol.2014, pp.2090-9071, 2014, https://doi.org/10.1155/2014/908476
  3. Kinetic Treatment of the Reaction of Fructose and N-Bromosuccinimide in Cationic/Anionic/Nonionic Micelles vol.2014, pp.2314-6818, 2014, https://doi.org/10.1155/2014/791563
  4. Study of Fuchsin Acid Fading in Micellar Media vol.46, pp.11, 2014, https://doi.org/10.1002/kin.20876
  5. Interactions between bromophenol blue and cetyl- trimethylammonium bromide in aqueous solutions and microemulsions vol.38, pp.10, 2017, https://doi.org/10.1080/01932691.2016.1250215
  6. Synthesis of optically active bromophenol blue encapsulated mesoporous silica–titania nanomatrix: structural and sensing characteristics pp.1573-4846, 2017, https://doi.org/10.1007/s10971-017-4523-8
  7. Photocatalytic Decolourization of Bromophenol Blue in Aqueous Solution with Cu(II)-Peroxo Complexes in Presence of SDS vol.6, pp.4, 2016, https://doi.org/10.1080/22297928.2016.1223555
  8. Partition of bromophenol blue in toluene/water/sodium bis(2-ethylhexyl)-sulfosuccinate water-in-oil microemulsions vol.8, pp.3, 2005, https://doi.org/10.1007/s11743-005-0358-y
  9. Kinetics of brilliant green fading in the presence of TX-100, DTAB and SDS vol.101, pp.1, 2010, https://doi.org/10.1007/s11144-010-0208-9
  10. Spontaneous Vesicle Formation in Aqueous Mixtures of Cationic Gemini Surfactant and Sodium Lauryl Ether Sulfate vol.26, pp.1, 2004, https://doi.org/10.5012/bkcs.2005.26.1.107
  11. Interfacial properties of cetyltrimethylammonium-coated SiO2 nanoparticles in aqueous media as studied by using different indicator dyes vol.316, pp.2, 2004, https://doi.org/10.1016/j.jcis.2007.07.036
  12. Inhibition Effect of {Cationic Surfactant-Ascorbic Acid} Premicellar Aggregation on the Rate of Hexacyanoferrate(III) Oxidation of Ascorbic Acid: A Kinetic Study vol.29, pp.6, 2004, https://doi.org/10.1080/01932690701783580
  13. Influence of surfactants on the fading of malachite green vol.6, pp.1, 2008, https://doi.org/10.2478/s11532-007-0066-0
  14. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  15. Kinetics Study of Malachite Green Fading in the Presence of TX-100, DTAB and SDS vol.30, pp.9, 2009, https://doi.org/10.5012/bkcs.2009.30.9.2051
  16. Influence of Nonionic Surfactant on Alkaline Hydrolysis of Methyl Violet Catalyzed by Cetyltrimethylammonium Bromide vol.33, pp.7, 2004, https://doi.org/10.1080/01932691.2011.599217
  17. Fluorescence of aminofluoresceins as an indicative process allowing one to distinguish between micelles of cationic surfactants and micelle-like aggregates vol.4, pp.3, 2004, https://doi.org/10.1088/2050-6120/4/3/034002
  18. Nascent-HBr-Catalyzed Removal of Orthogonal Protecting Groups in Aqueous Surfactants vol.85, pp.4, 2004, https://doi.org/10.1021/acs.joc.9b02561