DOI QR코드

DOI QR Code

Synthesis and Crystal Structure of a New Quaternary Chalcoantimonide: KLa2Sb3S9 and KSm2Sb3Se8

  • Kim, Sung-Jin (Department of Chemstry, Ewha Womans University) ;
  • Park, Sun-Ju (Department of Chemstry, Ewha Womans University) ;
  • Yim, Sun-Ah (Department of Chemstry, Ewha Womans University)
  • Published : 2004.04.20

Abstract

Silver-needle shaped crystals of $KLa_2Sb_3S_9$ from $K_2S_x$ flux and $KSm_2Sb_3Se_8$ from NaCl/KCl flux reactions were obtained and their crystal structures were determined by the single crystal X-ray diffraction method. $KLa_2Sb_3S_9$ crystallizes in the orthorhombic noncentrosymmetric space group $P2_12_12_1$ (No.19) with a unit cell of a = 4.220(3) ${\AA}$, b = 24.145(2) ${\AA}$, c = 14.757(5) ${\AA}$ and Z = 4. $KSm_2Sb_3Se_8$ crystallizes in the orthorhombic space group Pnma (No.62) with a unit cell of a = 16.719(3) ${\AA}$, b = 4.1236(8) ${\AA}$, c = 22.151(4) ${\AA}$ and Z = 4. Both structures have three-dimensional tunnel frameworks filled with $K^+$ ions. $KSm_2Sb_3Se_8$ is an ordered version of $ALn_{1{\pm}X}B_i{4{\pm}X}S_8$, and it is made up of NaCl-type and $Gd_2S_3$-type fragments. $KLa_2Sb_3S_9$ also contains building fragments similar to those of $KSm_2Sb_3Se_8$, however, there are chalcogen-chalcogen bonds in the $Gd_2S_3$-type fragment. The formula of $KLa_2Sb_3S_9$ can be described as $(K^+ )(La^{3+})_2(Sb^{3+})^3(S^{2-})_7(S_2^{2-})$.

Keywords

References

  1. Doerrscheidt, W.; Shafer, H. Z. Naturforsch. 1981, 36B, 410.
  2. Cordier, G.; Schäfer, H. Rev. Chim. Miner. 1981, 18, 218.
  3. Eisenmann, B.; Schäfer, H. Z. Naturforsch. 1979, 34B, 383.
  4. McCarthy, T. J.; Kanatzidis, M. G. Inorg. Chem. 1994, 33, 1205. https://doi.org/10.1021/ic00084a039
  5. Smith, P. P. K.; Hyde, B. G. Acta Cryst. 1983, C39, 1498.
  6. Skowron, A.; Brown, I. D. Acta Cryst. 1990, C46, 527.
  7. Lemoine, P. P.; Carré, D.; Robert, F. Acta Cryst. 1991, C47, 938.
  8. Wacker, K.; Salk, M.; Decker-Schultheiss, G.; Keller, E.Z. Anorg. Allg. Chem. 1991. 606, 51. https://doi.org/10.1002/zaac.19916060105
  9. Odink, D. A.; Carteaux,V.; Payen, C.; Ouvrard, G. Chem. Mater. 1993, 5, 237. https://doi.org/10.1021/cm00026a015
  10. Olivier-Fourcade, J.; Ibanez, A.; Jumas, J. C.; Maurin, M.;Lefebvre, I.; Lippens, P.; Lannoo, M.; Allan, G. J. Solid StateChem. 1990, 87, 366. https://doi.org/10.1016/0022-4596(90)90039-Z
  11. Rustamov, P. G.; Khasaev, J. P.; Aliev, O. M. Inorg. Mater. 1981, 17, 1469.
  12. Aliev, O. M.; Maksudova, T. F.; Samsonova, N. D.; Finkelshtein, L. D.; Rustamov, P. G. Inorg. Mater. 1986, 22, 23.
  13. Alieva, Z. G.; Khasaev, D. P.; Namazov, F. A.; Aliev, F. G.;Aliev, O. M. Russ. J. Inorg. Chem. 1988, 33, 914.
  14. Chen, J. H.; Dorhout, P. H. J. Alloys and Compds. 1997, 249,199. https://doi.org/10.1016/S0925-8388(96)02858-7
  15. Choi, K.-S.; Kanatzidis, M. G. Chem. Mater. 1999, 11, 2613. https://doi.org/10.1021/cm990320l
  16. Choi, K.-S.; Iordanidis, L.; Chondroudis, K.; Kanatzidis, M. G.Inorg. Chem. 1997, 36, 3804. https://doi.org/10.1021/ic970224r
  17. Choi, K.-S.; Hanko, J. A.; Kanatzidis, M. G. J. Solid State Chem.1999, 147, 309. https://doi.org/10.1006/jssc.1999.8287
  18. Park, S.; Kim, S.-J. J. Solid State Chem. 2001, 161, 129. https://doi.org/10.1006/jssc.2001.9299
  19. Chung, D.-Y.; Iordanidis, L.; Choi, K.-S.; Kanatzidis, M. G. Bull.Korean Chem. Soc. 1998, 19, 1283.
  20. Iordanidis, L.; Schindler, J. L.; Kannewurf, C. R.; Kanatzidis, M.G. J. Solid State Chem. 1999, 143, 151. https://doi.org/10.1006/jssc.1998.8049
  21. Chen, J. H.; Dorhout, P. K. J. Solid State Chem. 1995, 117,318. https://doi.org/10.1006/jssc.1995.1279
  22. Lee, S.; Foran, B. J. Am. Chem. Soc. 1994, 116, 154. https://doi.org/10.1021/ja00080a018
  23. Hoffmann, W. Z. Z. Kristallogr. 1933, 86, 225.
  24. Schleid, T. Z. Anorg. Allg. Chem. 1990, 111.
  25. Grundmeier, T.; Urland, W. Z. Anorg. Allg. Chem. 1992, 1977.
  26. Tideswell, N. W.; Kruse, F. H.; McCullough, J. D. Acta Cryst.1957, 10, 99. https://doi.org/10.1107/S0365110X57000298
  27. Smith, M. J.; Knight, R. J.; Spencer, C. W. J. Appl. Phys. 1962,33, 2186. https://doi.org/10.1063/1.1728925
  28. Testardi, L. R.; Bierly, J. N., Jr.; Donahoe, F. J. J.Phys. Chem. Solids 1962, 23, 1209. https://doi.org/10.1016/0022-3697(62)90168-3
  29. Champness, C. H.;Chiang, T. P.; Parekh, P. J. Phys. 1965, 43, 653.
  30. Yim, W. M.;Fitzke, E. V. J. Electrochem. Soc. 1968, 115, 556. https://doi.org/10.1149/1.2411329
  31. Sheldrick, W. S.; Kaub, J. Z. Anorg. Allg. Chem. 1989, 536,114. https://doi.org/10.1002/zaac.19865360513
  32. Prewitt, C. T.; Sleight, A. W. Inorg. Chem. 1968, 7, 1090. https://doi.org/10.1021/ic50064a009
  33. Shannon, R. D. Acta Cryst. 1976, A32, 751.

Cited by

  1. Synthesis and Crystal Structure of New Quaternary Chalcoantimonide: KLa2Sb3S9 and KSm2Sb3Se8. vol.35, pp.30, 2004, https://doi.org/10.1002/chin.200430024
  2. Synthesis and Characterization of the Thermally Stable Ho(hfa)3(tme) vol.25, pp.8, 2004, https://doi.org/10.5012/bkcs.2004.25.8.1207
  3. Crystal Structure and Physical Properties of the Lanthanum Chalcoantimonate TlLa2Sb3Se9 vol.647, pp.2, 2004, https://doi.org/10.1002/zaac.202000386