DOI QR코드

DOI QR Code

Self-Assembled and Alternative Porphyrin-Phthalocyanine Array

  • Kwag, Gwang-Hoon (Kumho Chemical Laboratories, Korea Kumho Petrochemical Co., Ltd.) ;
  • Park, Eun-Joo (Kumho Chemical Laboratories, Korea Kumho Petrochemical Co., Ltd.) ;
  • Kim, Sung-Hyun (Department of Chemistry, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2004.02.20

Abstract

An alternative molecular porphyrin-phthalocyanine aggregate was prepared and characterized with UV-visible and X-ray absorption spectroscopies. UV-visible experiments evidence 1-dimensional porphyrin-phthalo-cyanine array formed by mixing $SnTPPCl_2 ({\lambda}_{max}=429,\;{\varepsilon}=2.4{\times10^ 5 /M{\cdot}cm)\;and\;NiPc(OBu)_8({\lambda}_{max}=744 nm,\;{\varepsilon}= 2.0{\times}10^ 5 /M{\cdot}cm)$ in solution. In the UV-visible spectrum of the porphyrin-phthalocyanine array, $(SnPNiPc)_n$, a new Q-band appeared at 844 nm with decrease of the Q-band peak of $NiPc(OBu)_8$ at 744 nm. The red-shift of Q-band evidences an alternative porphyrin-phthalocyanine array formed in solution through metal-halide interaction rather than ${\pi}-{\pi}$ facial interaction, in which nickel of $NiPc(OBu)_8$ coordinates with chloride of $SnTPPCl_2$ through self assembly. Ni K-edge XANES (X-ray absorption near edge structure) spectra also support the axial ligation of nickel to chloride. The square planar structure of $NiPc(OBu)_8$ turns to an octahedral structure in (SnPNiPcSnP) by axial ligation. A higher energy-shift (0.2 eV) of the preedge peak of (SnPNiPcSnP) indicaties partial oxidation of nickel by charge transfer from NiPc$(OBu)_8$ to SnTPPCl$_2$.

Keywords

References

  1. Phthalocyanines-Properties and Application; Leznoff, C. C.;Lever, A. B. P., Eds.; VCH: New York, 1989-1994; Vol. 1-3.
  2. Zimmerman, S. C.; Wendland, M. S.; Rakow, N. A.; Zharov, I.;Suslick, K. S. Nature 2002, 418, 399. https://doi.org/10.1038/nature00877
  3. Porphyrins: Excited States and Dynamics, ACS Symp. Ser.321; Gouterman, M.; Rentzepis, P. M.; Straub, K. D., Eds.; ACS:Washington DC, 1986.
  4. Selensky, R.; Holten, D.; Windsor, M. W.; Paine, J.; Dolphin, D. Chem. Phys. 1981, 60, 33. https://doi.org/10.1016/0301-0104(81)80105-X
  5. Wojaczynski, J.; Latos-Grazynski, L. Coord. Chem. Rev. 2000,204, 113. https://doi.org/10.1016/S0010-8545(99)00207-6
  6. Gust, D.; Moore, T.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40. https://doi.org/10.1021/ar9801301
  7. Ogawa, K.; Zhang, T.; Yoshihara, K. J. Am. Chem. Soc. 2002, 124,22. https://doi.org/10.1021/ja0169015
  8. Joyner, R. D.; Kenney, M. E. J. Am. Chem. Soc. 1960, 82,5790. https://doi.org/10.1021/ja01507a007
  9. Nohr, R. S.; Kunznesof, P. M.; Wynne, K. J.; Kenney, M.E.; Siebenmann, P. G. J. Am. Chem. Soc. 1981, 103, 4371. https://doi.org/10.1021/ja00405a014
  10. Joyner, R. D.; Kenney, M. E. Inorg. Chem. 1962, 1, 717. https://doi.org/10.1021/ic50003a057
  11. Owen, J. E.; Kenney, M. E. Inorg. Chem. 1962, 1, 334. https://doi.org/10.1021/ic50002a027
  12. Dirk, C. W.; Inabe, T.; Schoch, K. F.; Marks, T. J. J. Am. Chem. Soc. 1983,105, 1539. https://doi.org/10.1021/ja00344a022
  13. Diehl, B. N.; Inabe, T.; Lyding, J. W.; Schoch, K. F.;Kannewurf, C. R.; Marks, T. J. J. Am. Chem. Soc. 1983, 105,1551. https://doi.org/10.1021/ja00344a023
  14. Fisher, K.; Hanack, M. Chem. Ber. 1983, 116, 1860. https://doi.org/10.1002/cber.19831160513
  15. Fisher, K.; Hanack, M. Chem. Ber. 1987, 120, 1853. https://doi.org/10.1002/cber.19871201113
  16. Gong, X.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. J. Am.Chem. Soc. 2002, 124, 14290. https://doi.org/10.1021/ja027405z
  17. Faren, C.; Christensen, C. A.; FitzGerald, S.; Bryce, M. R.;Beeby, A. J. Org. Chem. 2002, 67, 9130. https://doi.org/10.1021/jo020340y
  18. Kimura, M.;Narikawa, H.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N.Chem. Mater. 2002, 14, 2711. https://doi.org/10.1021/cm020222r
  19. Gusev, A. V.; Rodgers, M. A. J. J. Phys. Chem. A 2002, 106,1985. https://doi.org/10.1021/jp013494a
  20. Hanack, M.; Kang, Y.-G. Synth. Met. 1992, 48, 79. https://doi.org/10.1016/0379-6779(92)90052-K
  21. Li, X.; Ng, D. K. P. Eur. J. Inorg. Chem. 2000, 1845.
  22. Ha, S.; Park, J.; Ohta, T.; Kwag, G.; Kim, S. Electrochem. Solid-State Lett. 1999, 2, 461. https://doi.org/10.1149/1.1390871
  23. Galoisy, L.; Calas, G. Mat. Res. Bull. 1993, 28, 221. https://doi.org/10.1016/0025-5408(93)90155-7
  24. Galoisy, L.; Calas, G. Geochim. Cosmochim. Acta 1993, 57, 3613. https://doi.org/10.1016/0016-7037(93)90143-K
  25. Galoisy, L.; Calas, G. Amer. Mineral. 1992, 77, 677.
  26. Kwag, G. Ph.D. Dissertation; Case Western Reserve University:May, 1996.

Cited by

  1. Synthesis, purification and thermal behaviour of sulfonated metalloporphyrins vol.109, pp.3, 2012, https://doi.org/10.1007/s10973-011-1952-4
  2. Study of the Edge-on Self-Assembly of Axially Substituted Silicon(IV) Phthalocyanine Derivatives in a Template on the HOPG Surface vol.31, pp.49, 2015, https://doi.org/10.1021/acs.langmuir.5b03690
  3. Synthesis of ordered carbonaceous frameworks from organic crystals vol.8, pp.1, 2017, https://doi.org/10.1038/s41467-017-00152-z
  4. electrochemical reduction vol.9, pp.16, 2018, https://doi.org/10.1039/C8SC00604K
  5. Axial Coordination of Porphyrinatocobalt(II) Complexes with Bis(pyridinolato)silicon(IV) Phthalocyanines vol.2007, pp.29, 2007, https://doi.org/10.1002/ejic.200700451
  6. Towards black chromophores: μ-oxo linked phthalocyanine–porphyrin dyads and phthalocyanine–subphthalocyanine dyad and triad arrays pp.48, 2009, https://doi.org/10.1039/b916649a
  7. Thermal studies of cobalt, iron and tin metalloporphyrins vol.101, pp.3, 2010, https://doi.org/10.1007/s10973-010-0784-y
  8. Simple and Convenient Design of a Spectroelectrochemical Cell for In Situ XANES Measurements of Adsorbed Species in Transmission Mode vol.26, pp.4, 2004, https://doi.org/10.5012/bkcs.2005.26.4.671
  9. Enhancement of Nitrite Oxidation by Heat-Treated Cobalt Phthalocyanine Supported on High Area Carbon vol.27, pp.2, 2004, https://doi.org/10.5012/bkcs.2006.27.2.329
  10. Assembling a Mixed Phthalocyanine−Porphyrin Array in Aqueous Media through Host−Guest Interactions vol.9, pp.2, 2004, https://doi.org/10.1021/ol0626645
  11. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450