DOI QR코드

DOI QR Code

Spectrophotometric Determination of Trace Hg(II) in Cetyltrimethylammonium Bromide Media

  • Published : 2004.12.20

Abstract

The simple and convenient determination of trace Hg(II) with its 2-mercaptobenzothiazole (MBT) complex in cetyltrimethylammonium bromide (CTAB) media has been studied. The UV-visible spectrum of Hg(II)-MBT complex in CTAB media had a good sensitivity and reproducibility. The Hg(II)-MBT complex in CTAB solution was very stable at pH 10.0 and could be quantitatively complexed if MBT were added to the sample solution more than 10 equivalent of Hg(II). The optimum concentration of CTAB was 0.001%. The calibration curve of Hg(II)-MBT complex with good linearity ($R^2$ = 0.9985) was obtained at the concentration range between $1.0{\times}10^-7$ and $1.0{\times}10^-5$ M in 0.001% CTAB media. The detection limit was $3.1{\times}10^-8$ M (6.2 ng m$L^{-1}$). Hg(II) in the synthetic samples and in the wastewater of the university's wastewater tank and the industrial wastewater tank could also be determined. Based on the experimental results, this proposed technique could be applied to the simple and convenient determination of trace Hg(II) in real samples.

Keywords

References

  1. Manahan, S. E. Environmental Chemistry, 6th Ed., Lewis Publisher: Boca Raton, U.S.A., 1994; p 184.
  2. Cossa, D.; Sanjuan, J.; Cloud, J.; Stockwell, P. B.; Toms, W. T. J.Anal. Atom. Spectrom. 1995, 10, 287. https://doi.org/10.1039/ja9951000287
  3. Horvat, M.; Liang, L.; Bloom, N. S. Anal. Chim. Acta 1993, 282,153. https://doi.org/10.1016/0003-2670(93)80364-Q
  4. Schmit, J.; Youla, M.; Gelinas, Y. Anal. Chim. Acta 1991, 249, 495. https://doi.org/10.1016/S0003-2670(00)83024-X
  5. Karunasagar, D.; Arunachalam, J.; Gangadharan, S. J. Anal. Atom.Spectrom. 1998, 13, 679. https://doi.org/10.1039/a802132e
  6. Vijayakumar, M.; Ramakrishna, T. V.; Aravamudan, G. Talanta1980, 27, 911. https://doi.org/10.1016/0039-9140(80)80153-6
  7. Saouter, E. Anal. Chem. 1994, 66, 2031. https://doi.org/10.1021/ac00085a018
  8. Schnitzer, G.; Soubelet, A.; Chafey, C. Mikrochim. Acta 1995,119, 199. https://doi.org/10.1007/BF01243999
  9. Manzoori, J. L.; Sorouraddin, M. H.; Shabani, A. M. H. J. Anal.Atom. Spectrom. 1998, 13, 305. https://doi.org/10.1039/a707520k
  10. Ugo, P.; Moretto, L.; Bertochello, P.; Wang, J. Electroanalysis1998, 10, 1017. https://doi.org/10.1002/(SICI)1521-4109(199810)10:15<1017::AID-ELAN1017>3.0.CO;2-D
  11. Katiuska, A.; Marinela, C.; Roman, M.; Jose, D.; Hilda, L.;Elizabeth, G.; Lenin, H. Fresenius J. Anal. Chem. 1996, 355, 319.
  12. Bermojo-Barrera, P.; Moreda-Pineiro, J.; Moreda-Pineiro, A.;Bermejo-Barrera, A. J. Anal. Atom. Spectrom. 1997, 12, 317. https://doi.org/10.1039/a605079d
  13. Eaton, A. D.; Clesceri, L. S.; Greenberg, A. E. Standard Methodsfor the Examination of Water and Wastewater, 19th Ed.; AmericanPublic Health Association: Washington, U.S.A., 1995; pp 3-19.
  14. Passariello, B.; Barbaro, M.; Quaresima, S.; Cascielo, A.; Marabini,A. Microchem. J. 1996, 54, 348. https://doi.org/10.1006/mchj.1996.0110
  15. Michael, K.; Herbert, R.; Irgolic, K. J. Fresenius J. Anal. Chem.1996, 355, 120.
  16. Kozelka, F. L. Anal. Chem. 1947, 19, 494. https://doi.org/10.1021/ac60007a022
  17. Laird, F. W.; Smith, A. Ind. Eng. Chem., Anal. Ed. 1938, 10, 576. https://doi.org/10.1021/ac50126a002
  18. Cholak, J.; Hubbard, D. M. Ind. Eng. Chem., Anal. Ed. 1946, 18,149. https://doi.org/10.1021/i560150a025
  19. Eaton, A. D.; Clesceri, L. S.; Greenberg, A. E. Standard Methodsfor the Examination of Water and Wastewater, 19th Ed.; AmericanPublic Health Association: Washington, U.S.A., 1995; pp 3-79.
  20. Lee, S.; Choi, H. Bull. Korean Chem. Soc. 2001, 22, 463.
  21. Park, S.; Choi, H. Anal. Chim. Acta 2002, 459, 75. https://doi.org/10.1016/S0003-2670(02)00103-4
  22. Choi, Y.; Choi, H. Bull. Korean Chem. Soc. 2003, 24, 222. https://doi.org/10.5012/bkcs.2003.24.2.222
  23. Yun, J.; Choi, H. Talanta 2000, 52, 893. https://doi.org/10.1016/S0039-9140(00)00441-0
  24. Turro, N. J.; Gratzel, M.; Braun, A. M. Angew. Chem. Int. Ed.Engl. 1980, 19, 675. https://doi.org/10.1002/anie.198006751
  25. Diaz Garcia, M. E.; Sanz-Medel, A. Talanta 1986, 33, 255. https://doi.org/10.1016/0039-9140(86)80060-1
  26. Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of InstrumentalAnalysis, 5th Ed.; Saunders College Publishing: Philadelphia,U.S.A., 1998; p 13.
  27. Esteve-Romero, J. S.; Monferrer-Pons, L.; Ramis-Ramos, G.;Garcia-Alvarez-Coque, M. C. Talanta 1995, 42, 737. https://doi.org/10.1016/0039-9140(95)01482-Q
  28. Spacu, G.; Kuras, M. Z. Anal. Chem. 1936, 102, 108.
  29. Cline Love, L. J.; Dorsey, J. G.; Habarta, J. G. Anal. Chem. 1984,56, 1132A. https://doi.org/10.1021/ac00275a001
  30. Jarosz, M.; Marczenko, Z. Analyst 1984, 109, 35. https://doi.org/10.1039/an9840900035

Cited by

  1. Determination of Mercury (II) Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode vol.2011, pp.2090-3537, 2011, https://doi.org/10.4061/2011/529415
  2. Adsorptive Stripping Voltammetric Technique for Monitoring of Mercury Ions in Aqueous Solution Using Nano Cellulosic Fibers Modified Carbon Paste Electrode vol.36, pp.2, 2013, https://doi.org/10.1007/s40009-013-0116-4
  3. Preconcentration and electroanalysis of silver at pt electrode modified with poly(2-aminothiazole) vol.49, pp.12, 2013, https://doi.org/10.1134/S1023193513010151
  4. ) in drinking water and local Thai liquors using homogeneous liquid–liquid extraction followed by fluorescence quenching of its ternary complex vol.5, pp.4, 2013, https://doi.org/10.1039/C2AY25834J
  5. Mercury(II) determination in commercial cosmetics and local Thai traditional medicines by flow injection spectrophotometry vol.38, pp.1, 2015, https://doi.org/10.1111/ics.12259
  6. Selective and Sensitive Electrochemical Determination of Trace Amounts of Mercury Ion in Some Real Samples Using an Ion Imprinted Polymer Nano-Modifier vol.163, pp.3, 2016, https://doi.org/10.1149/2.0511603jes
  7. Spectroscopic studies of micelle-enhanced ligand exchange of gallium (III)/4-(2-pyridylazo) resorcinol complex by calf thymus DNA vol.117, pp.None, 2014, https://doi.org/10.1016/j.saa.2013.07.113
  8. Electrochemical Characterization of Gold-Nanostructured Platinum Substrates and Application to Determination of Hg(II) at Trace Levels vol.15, pp.1, 2019, https://doi.org/10.2174/1573411014666180320154119