DOI QR코드

DOI QR Code

Acidic Properties and Catalytic Activity of Titanium Sulfate Supported on TiO2

  • Sohn, Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Lee, Si-Hoon (Environment Research Team, Research Institute of Industrial Science and Technology) ;
  • Cheon, Park-Won (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Kim, Hea-Won (Department of Industrial Chemistry, Kyung Il University)
  • 발행 : 2004.05.20

초록

Titanium sulfate supported on $TiO_2$was prepared by impregnation of powdered $TiO_2$with an aqueous solution of titanium sulfate followed by calcining in air at high temperature. For Ti$(SO_4)_2/TiO_2$ samples calcined at 300 $^{\circ}C$, no diffraction lines of titanium sulfate are observed at $Ti(SO_4)_2$loading up to 30 wt%, indicating good dispersion of $Ti(SO_4)_2$ on the surface of $TiO_2$. The acidity of the catalysts increased in proportion to the titanium sulfate content up to 20 wt% of $Ti(SO_4)_2$. 20 wt% $Ti(SO_4)_2/TiO_2$ calcined at 300 $^{\circ}C$ exhibited maximum catalytic activities for 2-propanol dehydration and cumene dealkylation. The catalytic activities for these reactions, were correlated with the acidity of catalysts measured by ammonia chemisorption method.

키워드

참고문헌

  1. Cheung, T. K.; d'Itri, J. L.; Lange, F. C.; Gates, B. C. Catal. Lett.1995, 31, 153. https://doi.org/10.1007/BF00808829
  2. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids andBases; Elsevier Science: Amsterdam, 1989; Chapter 4.
  3. Olah, G. A.; Prakash, G. K. S.; Sommer, J. Superacids; Wiley-Interscience: New York, 1985; Chapter 2.
  4. Arata, K. Adv. Catal. 1990, 37, 165. https://doi.org/10.1016/S0360-0564(08)60365-X
  5. Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, 1.
  6. Ward, D. A.; Ko, E. I. J. Catal. 1994, 150, 18. https://doi.org/10.1006/jcat.1994.1319
  7. Vaudagna, S. R.; Comelli, R. A.; Canavese, S. A.; Figoli, N. S. J.Catal. 1997, 169, 389. https://doi.org/10.1006/jcat.1997.1690
  8. Kustov, L. M.; Kazansky, V. B.; Figueras, F.; Tichit, D. J. Catal.1994, 150, 143. https://doi.org/10.1006/jcat.1994.1330
  9. Sayari, A.; Yang, Y.; Song, X. J. Catal. 1997, 167, 346. https://doi.org/10.1006/jcat.1997.1595
  10. Hsu, C. Y.; Heimbuch, C. R.; Armes, C. T.; Gates, B. C. J. Chem.Soc., Chem. Commun. 1992, 1645.
  11. Cheung, T. K.; Gates, B. C. J. Catal. 1997, 168, 522. https://doi.org/10.1006/jcat.1997.1654
  12. Adeeva, V.; de Haan, H. W.; Janchen, J.; Lei, G. D.; Schunemann,V.; van de Ven, L. J. M.; Sachtler, W. M. H.; van Santen, R. A. J.Catal. 1995, 151, 364. https://doi.org/10.1006/jcat.1995.1039
  13. Wan, K. T.; Khouw, C. B.; Davis, M. E. J. Catal. 1996, 158, 311. https://doi.org/10.1006/jcat.1996.0030
  14. Song, X.; Reddy, K. R.; Sayari, A. J. Catal. 1996, 161, 206. https://doi.org/10.1006/jcat.1996.0178
  15. Coelho, M. A.; Resasco, D. E.; Sikabwe, E. C.; White, R. L.Catal. Lett. 1995, 32, 253. https://doi.org/10.1007/BF00813219
  16. Hosoi, T.; Shimadzu, T.; Ito, S.; Baba, S.; Takaoka, H.; Imai, T.;Yokoyama, N. Prepr. Symp. Div. Petr. Chem.; American ChemicalSociety: LosAngels, CA, 1988; p 562.
  17. Ebitani, K.; Konishi, J.; Hattori, H. J. Catal. 1991, 130, 257. https://doi.org/10.1016/0021-9517(91)90108-G
  18. Signoretto, M.; Pinna, F.; Strukul, G.; Chies, P.; Cerrato, G.;Ciero, S. D.; Morterra, C. J. Catal. 1997, 167, 522. https://doi.org/10.1006/jcat.1997.1575
  19. Hino, M.; Arata, K. J. Chem. Soc., Chem. Commun. 1987, 1259.
  20. Larsen, G.; Lotero, E.; Parra, R. D. In Proceeding of the 11thInternational Congress on Catalysis; Elsevier : New York, 1996;pp 543-551.
  21. Arata, K.; Hino, M.; Yamagata, N. Bull. Chem. Soc. Jpn. 1990, 63,244. https://doi.org/10.1246/bcsj.63.244
  22. Sohn, J. R.; Kwon, T. D.; Kim, S. B. J. Ind. Eng. Chem. 2001, 7,441.
  23. Sohn, J. R.; Lee, J. S. Bull. Korean Chem. Soc. 2003, 24, 159. https://doi.org/10.5012/bkcs.2003.24.2.159
  24. Sohn, J. R.; Park, W. C.; Kim, H. W. J. Catal. 2002, 209, 69. https://doi.org/10.1006/jcat.2002.3581
  25. Sohn, J. R.; Bae, J. H. Korean J. Chem. Eng. 2000, 17, 86. https://doi.org/10.1007/BF02789259
  26. Sohn, J. R.; Park, M. Y. Langmiur 1998, 14, 6140. https://doi.org/10.1021/la980222z
  27. Sohn, J. R.; Kim, H. W.; Park, M. Y.; Park, E. H.; Kim, J. T.; Park,S. E. Appl. Catal. A: General 1995, 128, 127. https://doi.org/10.1016/0926-860X(95)00057-7
  28. Saur, O.; Benstitel, M.; Saad, A. B. H.; Lavalley, J. C.; Tripp, C.P.; Morrow, B. A. J. Catal. 1986, 99, 104. https://doi.org/10.1016/0021-9517(86)90203-4
  29. Morrow, B. A.; McFarlane, R. A.; Lion, M.; Lavalley, J. C. J.Catal. 1987, 107, 232. https://doi.org/10.1016/0021-9517(87)90288-0
  30. Yamaguchi, T. Appl. Catal. 1990, 61, 1. https://doi.org/10.1016/S0166-9834(00)82131-4
  31. Jin, T.; Yamaguchi, T.; Tananbe, K. J. Phys. Chem. 1986, 90,4794. https://doi.org/10.1021/j100411a017
  32. Sohn, J. R.; Park, W. C. Appl. Catal. A: General 2003, 239, 269. https://doi.org/10.1016/S0926-860X(02)00392-7
  33. Hua, W.; Xia, Y.; Yue, Y.; Gao, Z. J. Catal. 2000, 196, 104. https://doi.org/10.1006/jcat.2000.3032
  34. Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159,170. https://doi.org/10.1006/jcat.1996.0076
  35. Tanabe, K. Solid Acids and Bases; Kodansha, Tokyo, 1970; p 170.
  36. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; MiyaMoto, A.;Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052. https://doi.org/10.1021/j100332a042
  37. Sohn, J. R.; Park, E, H.; Kim, H. W. J. Ind. Eng. Chem. 1999, 5,253.
  38. Olah, F. G. A.; Prakash, G. K. S.; Sommer, J. Science 1979, 206,13. https://doi.org/10.1126/science.206.4414.13
  39. Miao, C.; Hua, W.; Chen, J.; Gao, Z. Catal. Lett. 1996, 37, 187. https://doi.org/10.1007/BF00807752
  40. Sohn, J. R.; Ryu, S. G. Langmuir 1993, 9, 126. https://doi.org/10.1021/la00025a029
  41. Sohn, J. R.; Lee, S. Y. Appl. Catal. A: General 1997, 164, 127. https://doi.org/10.1016/S0926-860X(97)00163-4
  42. Sohn, J. R.; Jang, H. J. Mol. Catal. 1991, 64, 349. https://doi.org/10.1016/0304-5102(91)85143-P
  43. Decanio, S. J.; Sohn, J. R.; Paul, P. O.; Lunsford, J. H. J. Catal. 1986, 101, 132. https://doi.org/10.1016/0021-9517(86)90236-8
  44. Sohn, J. R.; Chun, E. W.; Pae, Y. I. Bull. Korean Chem. Soc. 2003,24, 1785. https://doi.org/10.5012/bkcs.2003.24.12.1785
  45. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 29. https://doi.org/10.1016/0021-9517(80)90336-X
  46. Sohn, J. R.; Park, W. C.; Kim, H. W. J. Catal. 2002, 209, 69. https://doi.org/10.1006/jcat.2002.3581

피인용 문헌

  1. Synthesis and physicochemical characterization of titanium oxide and sulfated titanium oxide obtained by thermal hydrolysis of titanium tetrachloride vol.31, pp.3, 2014, https://doi.org/10.1590/0104-6632.20140313s00002506
  2. Characterization of NiO-TiO2 Modified with WO3 and Catalytic Activity for Acid Catalysis vol.25, pp.12, 2004, https://doi.org/10.5012/bkcs.2004.25.12.1881
  3. NiSO4 Supported on FeO-promoted ZrO2 Catalyst for Ethylene Dimerization vol.26, pp.11, 2005, https://doi.org/10.5012/bkcs.2005.26.11.1749
  4. Preparation and Characterization of NiO/CeO2-ZrO2/WO3 Catalyst for Ethylene Dimerization: Effect of CeO2 Doping and WO3 Modifying on Catalytic Ac vol.26, pp.5, 2004, https://doi.org/10.5012/bkcs.2005.26.5.755
  5. Removal of Ethylene over KMnO4/Al2O3-SiO2 vol.27, pp.12, 2004, https://doi.org/10.5012/bkcs.2006.27.12.2064
  6. NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis vol.27, pp.6, 2004, https://doi.org/10.5012/bkcs.2006.27.6.821
  7. Physicochemical and catalytic properties of NiO–TiO2 modified with WO3 for ethylene dimerization vol.298, pp.None, 2006, https://doi.org/10.1016/j.apcata.2005.09.033
  8. Spectroscopic studies on NiO supported on ZrO2 modified with MoO3 for ethylene dimerization vol.317, pp.2, 2004, https://doi.org/10.1016/j.apcata.2006.10.015