DOI QR코드

DOI QR Code

Mesoscopic Solvent Dynamics in a Real Dimensional System

  • Lee, Song-Hi (Department of Chemistry, Kyungsung University)
  • Published : 2004.12.20

Abstract

Hydrodynamic simulations of mesoscopic solvent have been performed by multi-particle collision algorithm in a real dimensional system without and with the random shifting of the grid. A systematic conversion of the dimensionless units to a real dimensional system was confirmed by jump rates of solvent particles. Speed distributions of solvent particles obtained from the simulations agreed very well with the Maxwell-Boltzmann distributions. Solvent viscosities obtained from the simulations and from the conversion of units are exactly the same which confirmed the correct conversion of the units once again. The calculation of the friction coefficient of a massive Brownian particle in a mesoscopic solvent as a function of Brownian particle diameter was examined as an example.

Keywords

References

  1. Frisch, U.; Hasslacher, B.; Pomeau, Y. Phys. Rev. Lett. 1986, 56,1505. https://doi.org/10.1103/PhysRevLett.56.1505
  2. McNamara, G. R.; Zanetti, G. Phys. Rev. Lett. 1988, 61, 2332. https://doi.org/10.1103/PhysRevLett.61.2332
  3. Pagonabarraga, I.; Hagen, M. H. J.; Frenkel, D. Europhys. Lett.1998, 42, 377. https://doi.org/10.1209/epl/i1998-00258-6
  4. Malevanets, A.; Kapral, R. J. Chem. Phys. 1999, 110, 8605. https://doi.org/10.1063/1.478857
  5. Malevanets, A.; Kapral, R. J. Chem. Phys. 2000, 112, 7260. https://doi.org/10.1063/1.481289
  6. Phys. Rev. E v.63 Ihle, T.;Kroll, D.M. https://doi.org/10.1103/PhysRevE.63.020201
  7. Ihle, T.; Kroll, D. M. Phys. Rev. E 2001, 63, 020201. https://doi.org/10.1103/PhysRevE.63.020201
  8. Lamura, A.; Gompper, G.; Ihle, T.; Kroll, D. M. Europhys. Lett.2001, 56, 768. https://doi.org/10.1209/epl/i2001-00586-5
  9. Lamura, A.; Gompper, G.; Ihle, T.; Kroll, D. M. Europhys. Lett.2001, 56, 319. https://doi.org/10.1209/epl/i2001-00522-9
  10. Physica A v.298 Lee, S.H.;Kapral, R.
  11. Allahyarov, E.; Gompper, G. Phys. Rev. E 2002, 66, 036702. https://doi.org/10.1103/PhysRevE.66.036702
  12. Lee, S. H.; Kapral, R. Physica A 2001, 298, 56. https://doi.org/10.1016/S0378-4371(01)00211-4
  13. Ko, S. Y.; Lee, S. H. Bull. Korean Chem. Soc. 2003, 24, 771. https://doi.org/10.5012/bkcs.2003.24.6.771
  14. Malevanets, A.; Yeomans, J. M. Europhys. Lett. 2000, 52, 231. https://doi.org/10.1209/epl/i2000-00428-0
  15. Falck, E.; Lahtinen, J. M.; Vattulainen, I.; Ala-Nissila, T. Eur.Phys. J. E 2004, 13, 67.
  16. Hashimoto, Y.; Chen, Y.; Ohashi, H. Comp. Phys. Comm. 2000,129, 56. https://doi.org/10.1016/S0010-4655(00)00092-8
  17. Inoue, Y.; Chen, Y.; Ohashi, H. Colloids and Surfaces A 2002,201, 297. https://doi.org/10.1016/S0927-7757(01)01041-X
  18. J. Chem. Phys. v.121 Lee, S.H.;Kapral, R. https://doi.org/10.1063/1.1815291
  19. Sakai, T.; Chen, Y.; Ohashi, H. Phys. Rev. E 2002, 65, 031503. https://doi.org/10.1103/PhysRevE.65.031503
  20. Tucci, K.; Kapral, R. J. Chem. Phys. 2004, 120, 8262. https://doi.org/10.1063/1.1690244
  21. Lee, S. H.; Kapral, R. J. Chem. Phys. 2004, 121, 11163. https://doi.org/10.1063/1.1815291
  22. Lee, S. H.; Kapral, R. In preparation.
  23. Week, J. D.; Chandler, D.; Anderson, H. C. J. Chem. Phys. 1971,54, 5237. https://doi.org/10.1063/1.1674820
  24. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J.Chem. Phys. 1982, 76, 673. https://doi.org/10.1063/1.442720
  25. Hynes, J. T.; Kapral, R.; Weinberg, M. J. Chem. Phys. 1970, 70,1456. https://doi.org/10.1063/1.437584