DOI QR코드

DOI QR Code

Highly Selective Liquid Membrane Sensor Based on 1,3,5-Triphenylpyrylium Perchlorate for Quick Monitoring of Sulfate Ions

  • Published : 2004.02.20

Abstract

A highly selective membrane electrode based on1,3,5-triphenylpyrylium perchlorate (TPPP) is presented. The proposed electrode shows very good selectivity for sulfate ions over a wide variety of common inorganic and organic anions. The sensor displays a nice Nernstian slope of -29.7 mV per decade. The working concentration ranges of the electrode is 1.0{\times}10^{-1}-6.3{\times}10^{-6} $M with a detection limit of $4.0{\times}10^{-6}$ M (480 ng per mL). The response time of the sensor in whole concentration ranges is very short (< 6 s). The response of the sensor is independent on the pH range of 2.5-9.5. The best performance was obtained with a membrane composition of 32% PVC, 59% benzyl acetate, 5% TPPP and 4% hexadecyltrimethylammonium bromide. It was successfully used as an indicator electrode for titration of sulfate ions with barium ions. The electrode was also applied for determination of salbutamol sulfate and paramomycine sulfate.

Keywords

References

  1. Wang, J. Electroanalytical Techniques in Clinical Chemistry andLaboratory Medicine; VCH: New York, 1988.
  2. Electrochemical Detection Techniques in the Applied Biosciences;Junter, G. A., Ed.; Ellis Horwood: Chichester, UK, 1998.
  3. Schulthess, P.; Ammann, D.; Krautler, B.; Caderas, C.; Stepanek,R.; Simon, W. Anal. Chem. 1985, 57, 1397. https://doi.org/10.1021/ac00284a048
  4. Stepanek, R.; Kraultler, B.; Schulthess, P.; Lindemann, B.;Ammann, D.; Simon, W. Anal. Chim. Acta 1986, 182, 83. https://doi.org/10.1016/S0003-2670(00)82439-3
  5. Amini, M. K.; Shahrokhian, S.; Tangestaninejad, S. Anal. Chem.1999, 71, 2502. https://doi.org/10.1021/ac9812633
  6. Meyerhoff, M. E.; Pranitis, D. M.; Yim, H. S.; Chaniotakis, N. A.;Park, S. B. Anal. Chim. Acta 1989, 217, 123. https://doi.org/10.1016/S0003-2670(00)80392-X
  7. Yuan, R.; Chai, Y.; Liu, D.; Gao, D.; Li, J.; Yu, R. Anal. Chem.1993, 65, 2572. https://doi.org/10.1021/ac00067a005
  8. Wuthier, U.; Pham, H. V.; Zand, R.; Welti, D.; Funck, R. J. J.;Bezegh, A.; Ammann, D.; Pretsch, E.; Simon, W. Anal. Chem.1984, 56, 535. https://doi.org/10.1021/ac00267a052
  9. Amini, M. K.; Shahrokhian, S.; Tangestaninejad, S. Anal. Chim.Acta 1999, 402, 137. https://doi.org/10.1016/S0003-2670(99)00549-8
  10. Badr, I. H. A.; Meyerhoff, M. E.; Hassan, S. S. M. Anal. Chem.1995, 67, 754.
  11. Nishizawa, S.; Bühlmann, P.; Xiao, K. P.; Umezawa, Y. Anal.Chim. Acta 1998, 35, 358.
  12. Li, Z. Q.; Liu, G. D.; Duan, L. M.; Shen, G. L.; Yu, R. Q. Anal.Chim. Acta 1999, 165, 382.
  13. Fibbioli, M.; Berger, M.; Schmidtchen, F.; Pretsch, E. Anal. Chem.2000, 72, 156. https://doi.org/10.1021/ac990696i
  14. Berrocal, M. J.; Cruz, A.; Badr, I. H. A.; Bachas, L. G. Anal.Chem. 2000, 72, 5295. https://doi.org/10.1021/ac000241p
  15. Morigi, M.; Scavetta, E.; Berrettoni, M.; Giorgetti, M.; Tonelli, D.Anal. Chim. Acta 2001, 439, 265. https://doi.org/10.1016/S0003-2670(01)01047-9
  16. Wizinger, R. Helv. Chem. Acta 1956, 5, 39.
  17. Shamsipur, M.; Yousefi, M.; Hosseini, M.; Ganjali, M. R. Anal.Chem. 2002, 74, 5538. https://doi.org/10.1021/ac0110451
  18. Ganjali, M. R.; Poursaberi, T.; Basiripour, F.; Salavati-Niasari, M.;Yousefi, M.; Shamsipur, M. Fresenius. J. Anal. Chem. 2001, 370,1091. https://doi.org/10.1007/s002160100915
  19. Ganjali, M. R.; Pourjavid, M. R.; Rezapour, M.; Haghgoo, S.Sens. Actuators B 2003, 89, 21. https://doi.org/10.1016/S0925-4005(02)00422-7
  20. Ganjali, M. R.; Poursaberi, T.; Hosseini, M.; Salavati-Niasari, M.;Yousefi, M.; Shamsipur, M. Anal. Sci. 2002, 18, 289. https://doi.org/10.2116/analsci.18.289
  21. Ganjali, M. R.; Naji, L.; Poursaberi, T.; Taghizadeh, M.; Pirelahi,H.; Yousefi, M.; Yeganeh-Faal, A.; Shamsipur, M. Talanta 2002,58, 359. https://doi.org/10.1016/S0039-9140(02)00289-8
  22. Lerchi, M.; Orsini, F.; Cimerman, Z.; Pretsch, E.; Chowdhury, D.A.; Kamata, S. Anal. Chem. 1996, 68, 3210. https://doi.org/10.1021/ac9601472
  23. Ammann, D.; Pretsch, E.; Simon, W.; Lindner, E.; Bezegh, A.;Pungor, E. Anal. Chim. Acta 1985, 171, 119. https://doi.org/10.1016/S0003-2670(00)84189-6
  24. Ammann, D.; Pretsch, E.; Simon, W.; Lindner, E.; Jeny, J.; Toth,K.; Pungor, E. Anal. Chem. 1991, 63, 1380. https://doi.org/10.1021/ac00014a009
  25. Gehring, P. M.; Morf, W. E.; Welti, M.; Pretsch, E.; Simon, W.Helv. Chin. Acta 1990, 73, 203. https://doi.org/10.1002/hlca.19900730124
  26. Umezawa, Y.; Umezawa, K.; Sato, H. Pure Appl. Chem. 1995, 67,507. https://doi.org/10.1351/pac199567030507

Cited by

  1. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
  2. Carbon paste electrode modified with chromium thiopental for the potentiometric flow injection analysis of chromium (III) vol.94, pp.2, 2012, https://doi.org/10.1080/02772248.2011.647028
  3. Application of Tetra Cyclohexyl Tin(IV) as an Anionic Carrier for the Construction of a New Salicylate Membrane Sensor vol.54, pp.4, 2013, https://doi.org/10.1002/jccs.200700139
  4. Effect of the Nature of a Quaternary Ammonium Salt and the Addition of a Neutral Carrier on Analytical Characteristics of Sulfate-Selective Electrodes vol.73, pp.4, 2018, https://doi.org/10.1134/S1061934818040081
  5. Chemically Modified Carbon Paste Electrode for Determination of Sulfate Ion by Potentiometric Method vol.18, pp.16, 2006, https://doi.org/10.1002/elan.200503562
  6. Novel Triiodide PVC-Based Membrane Sensor Based on a Charge Transfer Complex of Iodine and Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone vol.26, pp.11, 2005, https://doi.org/10.5012/bkcs.2005.26.11.1738
  7. Zn2+ PVC-based Membrane Sensor Based on 3-[(2-Furylmethylene)amino]-2-thioxo-1,3-thiazolidin-4-one vol.26, pp.4, 2005, https://doi.org/10.5012/bkcs.2005.26.4.579
  8. Highly Selective and Sensitive Copper(II) Membrane Sensors Based on 6-Methyl-4-(1-phenylmethylidene)amino-3-thioxo-1,2,4-triazin-5-one as a New Neutral Ionophore vol.17, pp.24, 2004, https://doi.org/10.1002/elan.200503356
  9. Sub-Micro Molar Monitoring of La3+ by a Novel Lanthanum PVC-Based Membrane Sensor Based on 3-Hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide vol.27, pp.10, 2004, https://doi.org/10.5012/bkcs.2006.27.10.1581
  10. A Highly Selective and Sensitive Calcium(II)-Selective PVC Membrane Based on Dimethyl 1-(4-Nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate as a Novel Ionophore vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.835
  11. Novel Tm(III) Membrane Sensor Based on 2,2'-Dianiline Disulfide and Its Application for the Fluoride Monitoring of Mouth Wash Preparations vol.27, pp.9, 2006, https://doi.org/10.5012/bkcs.2006.27.9.1418
  12. A Highly Selective and Sensitive Barium(II)-Selective PVC Membrane Based on Dimethyl 1-Acetyl-8-oxo-2,8-dihydro- 1H-pyra-zolo[5,1-a]isoindole-2,3-dicarboxylate vol.18, pp.9, 2006, https://doi.org/10.1002/elan.200503472
  13. Highly selective and sensitive chromium(III) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore vol.119, pp.1, 2004, https://doi.org/10.1016/j.snb.2005.11.048
  14. Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor vol.28, pp.1, 2004, https://doi.org/10.5012/bkcs.2007.28.1.068
  15. Synthesis and Characterization of 2, 6-Di-(4'-Methyl Phenyl) Pyrylium Fluoroborate and Perchlorate in Single Step Salts Using 4'-Methyl Acetophenone vol.21, pp.1, 2012, https://doi.org/10.5369/jsst.2012.21.1.13
  16. Automated biological sulphate reduction: a review on mathematical models, monitoring and bioprocess control vol.39, pp.6, 2004, https://doi.org/10.1093/femsre/fuv033
  17. Preparation and properties of some ion selective membranes: A review vol.1182, pp.None, 2004, https://doi.org/10.1016/j.molstruc.2019.01.050