DOI QR코드

DOI QR Code

Theoretical Studies of Geometries of Hexafluoro-1,3-butadiene, Tetrafluoro-1,3-butadiene, and Difluoro-1,3-butadiene Compounds

  • Published : 2004.04.20

Abstract

The geometrical structures of various isomers of hexafluoro-1,3-butadiene (HFBD), tetrafluoro-1,3-butadiene (TFBD), and difluoro-1,3-butadiene (DFBD) have been studied theoretically. Natural steric and natural resonance theory (NRT) analyses indicate that the lower energy of skew s-cis conformer of hexafluoro-1,3-butadiene than that of the s-trans conformer is originated from the strong steric repulsions between fluorine atoms particularly in the s-trans conformer. The resonance structures generated by NRT also show that the lone electron pairs of fluorine atoms effectively extend the conjugation, and the large differences in energy among the structural isomers of tetrafluoro-1,3-butadiene and difluoro-1,3-butadiene are in part attributed to the differences in the delocalization energies, in addition to the steric repulsion between fluorine atoms. Other interatomic interactions, such as hydrogen bonding, also play important roles in determination of the structures of isomers of tetrafluoro-1,3-butadiene and difluoro-1,3-butadiene.

Keywords

References

  1. Cho, H.-G.; Strauss, H. L.; Snyder, R. G. J. Phys. Chem. 1992, 96,5290. https://doi.org/10.1021/j100192a022
  2. Cheong, B.-S.; Cho, H.-G. J. Phys. Chem. A 1997, 101, 7901. https://doi.org/10.1021/jp971466f
  3. Albright, J. C.; Nielsen, J. R. J. Chem. Phys. 1957, 26, 370. https://doi.org/10.1063/1.1743300
  4. Beaudet, R. A. J. Am. Chem. Soc. 1965, 87, 1390. https://doi.org/10.1021/ja01084a046
  5. Brundle, C. R.; Robin, M. B. J. Am. Chem. Soc. 1970, 92, 5550. https://doi.org/10.1021/ja00722a003
  6. Chang, C. H.; Andreassen, A. L.; Bauer, S. H. J. Org. Chem. 1971,36, 920. https://doi.org/10.1021/jo00806a013
  7. Toth, J. P.; Koster, D. F. Spectrochim. Acta 1975, 31A, 1891.
  8. Wurrey, C. J.; Bucy, W. E.; Durig, J. R. J. Chem. Phys. 1977, 67,2765. https://doi.org/10.1063/1.435191
  9. Choudhury, T.; Scheiner, S. J. Mol. Struct. (Theochem.) 1984, 109,373. https://doi.org/10.1016/0166-1280(84)80021-4
  10. Dixon, D. A. J. Phys. Chem. 1986, 90, 2038. https://doi.org/10.1021/j100401a013
  11. Foley, M. S. C.; Braden, D. A.; Hudson, B. S.; Zgierski, M. Z. J.Phys. Chem. A 1997, 101, 1455. https://doi.org/10.1021/jp962611c
  12. Karpfen, A. J. Phys. Chem. A 1999, 103, 2821. https://doi.org/10.1021/jp984100r
  13. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J.M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres,J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J.A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
  14. Badenhoop, J. K.; Weinhold, F. J. Chem. Phys. 1997, 107, 5406. https://doi.org/10.1063/1.474248
  15. Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998, 19, 593. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<593::AID-JCC3>3.0.CO;2-M
  16. Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998, 19, 610. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<610::AID-JCC4>3.0.CO;2-U
  17. Glendening, E. D.; Badenhoop, J. K.; Weinhold, F. J. Comput.Chem. 1998, 19, 628. https://doi.org/10.1002/(SICI)1096-987X(19980430)19:6<628::AID-JCC5>3.0.CO;2-T
  18. High Performance Computational Chemistry Group, NWChem, AComputational Chemistry Package for Parallel Computers, Version4.1; Pacific Northwest National Laboratory: Richland, WA, 2002.
  19. Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem.Phys. 1968, 49, 2592. https://doi.org/10.1063/1.1670458
  20. Conrad, R. M.; Dows, D. A. Spectrochim. Acta 1965, 21, 1039. https://doi.org/10.1016/0371-1951(65)80180-1
  21. Servis, K. L.; Roberts, J. D. J. Am. Chem. Soc. 1965, 87, 1339. https://doi.org/10.1021/ja01084a032
  22. Bach, A.; Lentz, D.; Luger, P.; Messerschmidt, M.; Olesch, C.;Patzschke, M. Angew. Chem. Int. Ed. 2002, 41, 296. https://doi.org/10.1002/1521-3773(20020118)41:2<296::AID-ANIE296>3.0.CO;2-A
  23. Jeffrey, G. A. An Introduction to Hydrogen Bonding; OxfordUniversity Press: New York, 1997; p 92.
  24. Craig, N. C.; Neese, C. F.; Nguyen, T. N.; Oertel, C. M.; Pedraza,L.; Chaka, A. M. J. Phys. Chem. A 1999, 103, 6726. https://doi.org/10.1021/jp9913721
  25. Becke, A. D. J. Chem. Phys. 1993, 98, 1372. https://doi.org/10.1063/1.464304
  26. Hu, H.-R.; Tian, A.; Wong, N.-B.; Li, W.-K. J. Phys. Chem. A2001, 105, 10372. https://doi.org/10.1021/jp011325k

Cited by

  1. by Electron Impact - Electron Energy-Loss Spectroscopy and ab Initio Calculations vol.116, pp.43, 2012, https://doi.org/10.1021/jp307599y
  2. Mechanism of thermal reactions of dimerization and trimerization of hexafluoro-1,3-butadiene: A quantum-chemical study vol.81, pp.6, 2008, https://doi.org/10.1134/S1070427208060153
  3. On the Unusual Synclinal Conformations of Hexafluorobutadiene and Structurally Similar Molecules vol.122, pp.18, 2018, https://doi.org/10.1021/acs.jpca.8b02157