DOI QR코드

DOI QR Code

Protonation and Energetical Investigations of Calix[4]-cyclen-benzo-crown-6 and Its Complexes with Zinc and Copper

  • Published : 2004.06.20

Abstract

Protonation constants of calix[4]-cyclen-benzo-crown-6, L in 1X$10^{-2}$ M $Bu_4NCF_3SO_3$ in 40% $CH_2Cl_2/CH_3OH$ at $25^{\circ}C$ determined by potentiometric titration are log $K_1$ = 10.91, log $K_2$ = 10.30, log $K_3$ = 6.24 and log $K_4$ = 2.55. Stability constants for the receptor L complexes with Cu(II) and Zn(II) in 1X$10^{-2}$ M $Bu_4NCF_3SO_3$ in 40% $CH_2Cl_2/CH_3OH$ at $25^{\circ}C$ were determined by UV-VIS spectrometric titration. Stability constants of the CuL and ZnL complexes as log $\beta$ are 4.37 and 3.45, respectively. Stabilization energies for protonations of receptor L, derived from ab initio Hartree-Fock method with 6-31G basis set, are ${\Delta}E_1$ = -290.1, ${\Delta}E_2$ = -205.0, ${\Delta}E_3$ = -124.9 and ${\Delta}E_4$ = -26.9 kcal/mol and complexation energy of ZnL complex is -370.3 kcal/mol.

Keywords

References

  1. Shinkai, S. Tetrahedron 1993, 49, 8933. https://doi.org/10.1016/S0040-4020(01)91215-3
  2. Bohmer, V. Angew. Chem. Int. Ed. Engl. 1995, 34, 713. https://doi.org/10.1002/anie.199507131
  3. Lhotak, P. L.; Shinkai, S. J. Synth. Org. Chem. Jpn. 1995, 53, 963. https://doi.org/10.5059/yukigoseikyokaishi.53.963
  4. Pochini, A.; Ungaro, R. In Comprehensive Supramolecular Chemistry; Vogel, F., Ed.; Pergamon Press: 1996; p 103.
  5. Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713. https://doi.org/10.1021/cr960385x
  6. McKervey, M. A.; Seward, E. M.; Ferguson, G.; Ruhl, B. L.;Harris, S. J. J. Chem. Soc., Chem. Commun. 1985, 388.
  7. Chang, S. K.; Kwon, S. K.; Cho, I. Chem. Lett. 1987, 947.
  8. Ferguson, G.; Kaitner, B.; McKervey, M. A.; Seward, E. M. J.Chem. Soc., Chem. Commun. 1987, 584.
  9. Ludwig, R.; Matsumoto, H.; Takeshita, M.; Ueda, K.; Shinkai, S.Supramol. Chem. 1995, 4, 319. https://doi.org/10.1080/10610279508028943
  10. Nagasaki, T.; Shinkai, S. J. Chem. Soc., Perkin Trans. 2 1991,1063.
  11. Bottino, F.; Giunta, L.; Pappalardo, S. J. Org. Chem. 1989, 54,5407. https://doi.org/10.1021/jo00284a001
  12. Beer, P. D.; Martin, J. P.; Drew, M. G. B. Tetrahedron 1992, 48,9917. https://doi.org/10.1016/S0040-4020(01)92282-3
  13. Matt, D.; Loeber, C.; Vicens, J.; Asfari, Z. J. Chem. Soc., Chem.Commun. 1993, 604.
  14. Arnaud-Neu, F.; Barrett, G.; Harris, S. J.; Owens, M.; McKervey,M. A.; Schwing-Weill, M.-J.; Schwinté, P. Inorg. Chem. 1993, 32,2644. https://doi.org/10.1021/ic00064a013
  15. Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud-Neu,F.; Fanni, S.; Schwing, M.-J.; Egberink, R. J. M.; de Jong, F.;Reinhoudt, D. J. Am. Chem. Soc. 1995, 117, 2767. https://doi.org/10.1021/ja00115a012
  16. Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris,S. J.; Kaitner, B.; Lough, A. J.; McKervey, M. A.; Marques, E.;Ruhl, B. L.; Schwing-Weill, M.-J.; Seward, E. M. J. Am. Chem.Soc. 1989, 111, 8681. https://doi.org/10.1021/ja00205a018
  17. Arnaud-Neu, F.; Cremin, S.; Harris, S.; McKervey, M. A.; Schwing-Weill, M.-J.; Schwinte, P.; Walker, A. J. Chem. Soc., Dalton Trans. 1997, 329.
  18. Gans, P.; Sabatini, A.; Vacca, A. J. Chem. Soc., Dalton Trans.1985, 1195.
  19. Pulpoka, B.; Jamkratoke, M.; Tuntulani, T.; Ruangpornvisuti, V.Tetrahedron Lett. 2000, 41, 9167. https://doi.org/10.1016/S0040-4039(00)01641-5
  20. Vetrogen, V.; Lukyamenko, N. G.; Schwing-Weill, M. J.; Arnaud-Neu, F. Talanta 1994, 41, 2105. https://doi.org/10.1016/0039-9140(94)00187-1
  21. Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4499. https://doi.org/10.1021/ja00455a049
  22. Davis, L. P.; Guidry, R. M.; Williams, J. R.; Dewar, M. J. S.;Rzep, H. S. J. Comput. Chem. 1981, 2, 433. https://doi.org/10.1002/jcc.540020412
  23. Dewar, M. J. S.; McKee, M. L.; Rzepa, H. S. J. Am. Chem. Soc. 1978, 100, 3607. https://doi.org/10.1021/ja00479a058
  24. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
  25. Dewar, M. J. S.; Reynolds, C. H. J.Comput. Chem. 1986, 2, 140.
  26. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,54, 724. https://doi.org/10.1063/1.1674902
  27. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. https://doi.org/10.1063/1.1677527
  28. Hariharan, P. C.; Pople, J. A. Theo. Chim. Acta 1973, 28, 213. https://doi.org/10.1007/BF00533485
  29. Hariharan, P. C.; Pople, J. A. J. Mol. Phys. 1974, 27, 209. https://doi.org/10.1080/00268977400100171
  30. Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163. https://doi.org/10.1016/0009-2614(80)80628-2
  31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.;Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi,J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.;Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H.P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.;Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu,G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox,D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong,M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.03;Gaussian, Inc.: Pittsburgh, PA, 2003.
  32. Brown, T. L.; LeMay, H. E., Jr.; Bursten, B. E. Chemistry theCentral Science; Pentice-Hall: New Jersey, 1997; p 903.
  33. Chemistry the Central Science Brown, T. L.;LeMay, H. E., Jr.;Bursten, B. E.

Cited by

  1. Optical Spectroscopy and Theoretical Studies in Calixarene Chemistry vol.58, pp.1-2, 2007, https://doi.org/10.1007/s10847-006-9132-z
  2. Molecular structures of 3,4-dichloro-2,5-diamido-substituted pyrrole anion dimers, their deprotonation reactions in systems with and without fluoride ion vol.772, pp.1, 2004, https://doi.org/10.1016/j.theochem.2006.06.013
  3. Non-rigid bis-(2,5-diamidopyrrole) receptor, its deprotonated species and their complexes with fluoride, chloride and hydroxide ions vol.907, pp.1, 2004, https://doi.org/10.1016/j.theochem.2009.04.029