DOI QR코드

DOI QR Code

Mossbauer Spectroscopic Study of La2-2xSr2xCu1-xFexO4-y(0≤x≤0.5) Solid-solution

  • Park, Jung-Chul (Department of Nano Materials Science and Engineering, Nano Applied Technology Research Center, Silla University) ;
  • Byeon, Song-Ho (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Kim, Don (Department of Chemistry, Pukyong National University) ;
  • Lee, Choong-Sub (Department of Physics, Pukyong National University)
  • 발행 : 2004.01.20

초록

Tetragonal $K_2NiF_4$-type $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$ solid-solution have been synthesized by citrate based sol-gel method. The valence state of iron was determined by Mossbauer spectroscopy and subsequent iodometric titration clearly showed that the copper ions in this solid-solution are in the mixed valence state Cu(II/III). When x ${\geq}$ 0.3, Fe(III) is competing with the mixture of Cu(II) and Cu(III) and $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$ exhibits a metallic character. No evidence for Cu(II)-O-Fe(IV) ${\leftrightarrow}$ Cu(III)-O-Fe(III) valence degeneracy was observed. In contrast, a small amount of Fe(IV) is observed with increasing x (x = 0.4 and 0.5), revealing a semiconducting behavior. These results suggest that the electronic interaction of Cu(III)-O-Fe(III) contributes greatly to the metallic character, while the electronic interaction of Cu(II)-O-Fe(IV) deteriorates the metallic character of $La_{2-2x}Sr_{2x}Cu_{1-x}Fe_xO_{4-y}$.

키워드

참고문헌

  1. Radaelli, P. G.; Hinks, D. G.; Mitchell, A. W.; Hunter, B. A.; Wagner, J. L.; Dabrowski, B.; Vandervoort, K. G.; Viswanathan, H. K.; Jorgensen, J. D. Physical Review B 1994, 49, 4163. https://doi.org/10.1103/PhysRevB.49.4163
  2. Rial, C.; Amador, U.; Moran, E.; Alario-Franco, M. A.; Andersen,N. H. Physica C 1994, 234, 237. https://doi.org/10.1016/0921-4534(94)90569-X
  3. Brian Maple, M. MRS Bulletin 1990, June, 60.
  4. Steudtner, C.; Moran, E.; Alario-Franco, M. A.; Martinez, J. L. J.Mater. Chem. 1997, 7, 661. https://doi.org/10.1039/a605588e
  5. Poix, P. J. Solid State Chem. 1980, 31, 95. https://doi.org/10.1016/0022-4596(80)90011-0
  6. Millburn, J. E.; Green, M. A.; Neumann, D. A.; Rosseinsky, M. J.J. Solid State Chem. 1999, 145, 401. https://doi.org/10.1006/jssc.1999.8111
  7. Johnston, D. C.; Stokes, J. P.; Goshorn, D. P.; Lewandowski, J. T.Physical Review B 1987, 36, 4007. https://doi.org/10.1103/PhysRevB.36.4007
  8. Braden, M.; Schweiss, P.; Heger, G.; Reichardt, W.; Fisk, Z.; Gamayunov, K.; Tanaka, I.; Kojima, H. Physica C 1994, 223, 396. https://doi.org/10.1016/0921-4534(94)91284-X
  9. Fujihara, S.; Nakata, T.; Kozuka, H.; Yoko, T. J. Solid State Chem.1995, 115, 456. https://doi.org/10.1006/jssc.1995.1159
  10. Ramesha, K.; Uma, S.; Vasanthacharya, N. Y.; Gopalakrishnan, J.J. Solid State Chem. 1997, 128, 169. https://doi.org/10.1006/jssc.1996.7160
  11. Park, J. C.; Kim, D.; Lee, C. S.; Kim, D. K. Bull. Korean Chem.Soc. 1999, 20, 1005.
  12. Park, J. C.; Kim, D.; Lee, C. S.; Byeon, S. H. Bull. Korean Chem.Soc. 2003, 24, 650. https://doi.org/10.5012/bkcs.2003.24.5.650
  13. Takeda, T.; Yamaguchi, Y.; Watanabe, H. J. Phys. Soc. Jpn. 1972,33, 967. https://doi.org/10.1143/JPSJ.33.967
  14. Demazeau, G.; Fabritchnyi, P.; Fournes, L.; Darracq, S.;Presniakov, I. A.; Pokholok, K. V.; Gorkov, V. P.; Etourneau, J. J.Mater. Chem. 1995, 5, 553. https://doi.org/10.1039/jm9950500553
  15. Wattiaux, A.; Fournes, L.; Demourgues, A.; Bernaben, N.;Grenier, J. C.; Pouchard, M. Solid State Comm. 1991, 77, 489. https://doi.org/10.1016/0038-1098(91)90726-C
  16. Adler, P. J. Solid State Chem. 1994, 108, 275. https://doi.org/10.1006/jssc.1994.1043
  17. Nobumasa, H.; Shimizu, K.; Nishina, M.; Kawai, T. Z. Phys. B1993, 90, 387. https://doi.org/10.1007/BF01308817