DOI QR코드

DOI QR Code

Chromatographic Separation of Xanthine Derivatives on Single and Mixed-Template Imprinted Polymers

  • Wang, Dexian (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University) ;
  • Hong, Seung-Pyo (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University) ;
  • Row, Kyung-Ho (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University)
  • Published : 2004.03.20

Abstract

We developed in the present study molecular imprinted polymers (MIPs), using single templates (pentoxifylline, caffeine and theophylline) and mixed-templates (pentoxifylline-caffeine, pentoxifylline-theophylline and caffeine-theophylline). The MIPs were prepared with methacrylic acid (MAA) as the monomer, ethylene glycol dimetharylate (EGDMA) as the crosslinker and 2,2'-azobis(isobutyronitrile) (AIBN) as the initiator. The obtained polymer particles (particle size after grinding was about 25-35 ${\mu}$m) were packed into a HPLC column (3.9 mm i.d. ${\times}$ 150 mm). The selectivity and chromatographic characteristics of the MIPs were studied using acetonitrile as the mobile phase at a flow rate of 0.8 mL/min. UV detector wavelength was set at 270 nm. Different single template MIPs showed different molecular recognitions to the templates and the structurally analogues, according to the rigidity and steric hindrance of the compounds. Recognition was improved on the mixed-template MIPs as a result of the cooperation or sum effect of the templates, whereas on the pentoxifylline-theophylline imprinted polymer, the highest selectivity and affinity were obtained. Separations of the test compounds on different polymers were also investigated.

Keywords

References

  1. Zhou, J.; He, X.; Li, Y. Anal. Chim. Acta 1999, 394, 353. https://doi.org/10.1016/S0003-2670(99)00298-6
  2. Sajonz, P.; Kele, M.; Zhong, G.; Sellergren, B.; Guiochon, G. J.Chromatogr. A 1998, 810, 1. https://doi.org/10.1016/S0021-9673(98)00247-7
  3. Owens, P. K.; Karlsson, L.; Lutz, E. S. M.; Andersson, L. I. TrendsAnal. Chem. 1999, 18, 146. https://doi.org/10.1016/S0165-9936(98)00092-2
  4. Chen, W.; Liu, F.; Zhang, X.; Li, K. A.; Tong, S. Talanta 2001, 55,29. https://doi.org/10.1016/S0039-9140(01)00328-9
  5. Zheng, N.; Li, Y. Z.; Chang, W. B.; Wang, Z. M.; Li, T. J. Anal.Chim. Acta 2002, 452, 277. https://doi.org/10.1016/S0003-2670(01)01465-9
  6. Spivak, D.; Shea, K. J. J. Org. Chem. 1999, 64, 4627. https://doi.org/10.1021/jo982118s
  7. Matsui, J.; Nicholls, I. A.; Takeuchi, T. Anal. Chim. Acta 1998,365, 89. https://doi.org/10.1016/S0003-2670(97)00664-8
  8. Bereczki, A.; Tolokan, A.; Horvai, G.; Horvath, V.; Lanza, F.;Hall, A. J.; Sellergren, B. J. Chromatogr. A 2001, 930, 31. https://doi.org/10.1016/S0021-9673(01)01190-6
  9. Ansell, R. J.; Kriz, D.; Mosbach, K. Curr. Opin. Biotechnol. 1996,7, 89. https://doi.org/10.1016/S0958-1669(96)80101-7
  10. Kriz, O.; Ramstrom, O.; Mosbach, K. Anal. Chem. 1997, 69,345A. https://doi.org/10.1021/ac971657e
  11. Lang, C. D.; Peng, H.; Bao, X. Y.; Nie, L. H.; Yao, S. Z. Analyst1999, 124, 1781. https://doi.org/10.1039/a905112k
  12. Yoshikawa, M.; Fujisawa, T.; Izumi, J. Anal. Chim. Acta 1998,365, 59. https://doi.org/10.1016/S0003-2670(98)00092-0
  13. Xie, J.; Zhu, L.; Luo, H.; Zhou, L.; Li, C.; Xu, X. J. Chromatogr. A2001, 934, 1. https://doi.org/10.1016/S0021-9673(01)01294-8
  14. Theodoridis, G.; Manesiotis, P. J. Chromatogr. A 2002, 948,163. https://doi.org/10.1016/S0021-9673(01)01457-1
  15. Baggiani, C.; Trotta, F.; Giraudi, G.; Moraglio, G.; Vanni, A. J.Chromatogr. A 1997, 786, 23. https://doi.org/10.1016/S0021-9673(97)00537-2
  16. Kobayashi, T.; Murawaki, Y.; Reddy, P. S.; Abe, M.; Fujii, N.Anal. Chim. Acta 2001, 435, 141. https://doi.org/10.1016/S0003-2670(00)01281-2

Cited by

  1. MULTI-SPE OF CAFFEINE AND CATECHIN COMPOUNDS FROM GREEN TEA BY CAFFEINE AND (+) CATECHIN MIPS vol.34, pp.15, 2011, https://doi.org/10.1080/10826076.2011.576296
  2. Covalent imprinted polymer for selective and rapid enrichment of ractopamine by a noncovalent approach vol.401, pp.7, 2011, https://doi.org/10.1007/s00216-011-5280-0
  3. Preparation and application of imprinted polymer for tetrabromobisphenol A using tetrachlorobisphenol A as the dummy template vol.5, pp.19, 2013, https://doi.org/10.1039/c3ay40781k
  4. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011 vol.27, pp.6, 2014, https://doi.org/10.1002/jmr.2347
  5. Mixed-Template Molecularly Imprinted Technique and its Application Research vol.787, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.787.99
  6. Adsorption isotherm of ibuprofen on molecular imprinted polymer vol.22, pp.2, 2005, https://doi.org/10.1007/BF02701495
  7. Adsorption isotherms of caffeine on molecular imprinted polymer vol.25, pp.4, 2008, https://doi.org/10.1007/s11814-008-0135-x
  8. Preparation and Characterization of Monolithic Poly(methacrylic acid - ethylene glycol dimethacrylate) Columns for High Performance Liquid Chromatography vol.27, pp.1, 2006, https://doi.org/10.5012/bkcs.2006.27.1.071
  9. Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium vol.282, pp.1, 2006, https://doi.org/10.1016/j.memsci.2006.05.031
  10. Adsorption Isotherms of Quercetin and Catechin Compounds on Quercetin-MIP* *https://doi.org/10.1016/s1005-9040(07)60089-0
  11. Solid-Phase Extraction of Caffeine and Catechin Compounds from Green Tea by Caffeine Molecular Imprinted Polymer vol.28, pp.2, 2004, https://doi.org/10.5012/bkcs.2007.28.2.276
  12. 케르세틴 분자각인 고정상 추출을 이용한 녹차에서 카페인 및 카테킨 화합물의 분리 vol.51, pp.2, 2004, https://doi.org/10.5012/jkcs.2007.51.2.165
  13. Adsorption Isotherms of Catechin Compounds on (+)Catechin-MIP vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1549