DOI QR코드

DOI QR Code

Atomic Layer Deposition of TiO2 Thin Films from Ti(OiPr)2(dmae)2 and H2O

  • Lee, Jae P. (Department of Chemistry, Kookmin University) ;
  • Park, Mi H. (Department of Chemistry, Kookmin University) ;
  • Chung, Taek-Mo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Yun-Soo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Sung, Myung M. (Department of Chemistry, Kookmin University)
  • Published : 2004.04.20

Abstract

$TiO_2$ thin films were grown on Si (100) substrates by atomic layer deposition using $[Ti(OPr^i )_2(dmae)_2]$ and water as precursors. The thickness, chemical composition, crystalline structure, and morphology of the deposited films were investigated by transmission electron microscopy, UV spectrometry, X-ray photoelectron pectroscopy, X-ray diffraction, and atomic force microscopy. The results show that $TiO_2$ ALD using $[Ti(OPr^i )_2(dmae)_2]$ as a precursor is self-controlled at temperatures of 100-300$^{\circ}C$. At the growth temperatures below 300$^{\circ}C$, the surface morphology of the $TiO_2$ films is smooth and uniform. The $TiO_2$ film was grown with a preferred orientation toward the [101] direction at 400$^{\circ}C$.

Keywords

References

  1. Brady, G. S.; Clauser, H. R. Materials Handbook; McGraw-Hill:New York, 1991.
  2. Martinet, C.; Paillard, V.; Gagnaire, A.; Joseph, J. J. Non-Cryst.Solids 1991, 216, 849.
  3. Won, T.; Yoon, S.; Kim, H. J. Electrochem. Soc. 1992, 139, 3284. https://doi.org/10.1149/1.2069068
  4. Cambell, S. A.; Gilmer, D. C.; Wang, X. -C. IEEE Trans.Electron. Devices 1997, 44, 104. https://doi.org/10.1109/16.554800
  5. Ritala, M.; Leskela, M.; Niinisto, L.; Haussalo, P. Chem. Mater.1993, 5, 1174. https://doi.org/10.1021/cm00032a023
  6. Ritala, M.; Leskela, M.; Rauhala, E. Chem. Mater. 1994, 6, 556. https://doi.org/10.1021/cm00040a035
  7. Rosental, A.; Tarre, A.; Adamson, P.; Gerst, A.; Kasikov, A.;Niilisk, A. Applied Surface Science 1999, 142, 204. https://doi.org/10.1016/S0169-4332(98)00706-5
  8. Ritala, M.; Leskela, M.; Johansson, L.-S.; Niinisto, L. Thin SolidFilms 1993, 228, 32. https://doi.org/10.1016/0040-6090(93)90557-6
  9. Ritala, M.; Leskela, M.; Nykanen, E.; Soininen, P.; Niinisto, L.Thin Solid Films 1993, 225, 228.
  10. Zhang, Q.; Griffin, G. L. Thin Solid Films 1995, 263, 65. https://doi.org/10.1016/0040-6090(95)06580-6
  11. Peng, C. H.; Desu, S. B. J. Am. Ceram. Soc. 1994, 77, 1799. https://doi.org/10.1111/j.1151-2916.1994.tb07054.x
  12. Yeung, K. S.; Lam, Y. W. Thin Solid Films 1983, 109, 169. https://doi.org/10.1016/0040-6090(83)90136-0
  13. Suntola, T. Mat. Sci. Rep. 1989, 4, 261. https://doi.org/10.1016/S0920-2307(89)80006-4
  14. Leskela, M.; Ritala, M. Thin Solid Films 2002, 409, 138. https://doi.org/10.1016/S0040-6090(02)00117-7
  15. Cameron, M. A.; Gartland, I. P.; Smith, J. A.; Diaz, S. F.; George,S. M. Langmuir 2000, 16, 7435. https://doi.org/10.1021/la9916981
  16. Jones, A. C.; Leedham, T. J.; Wright, P. J.; Crosbie, M. J.;Fleeting, K. A.; Otway, D. J.; O'Brien, P.; Pemble, M. E. J. Mater.Chem. 1998, 8, 1773. https://doi.org/10.1039/a802933d
  17. An, K. S.; Cho, W.; Sung, K.; Lee, S. S.; Kim, Y. Bull. KoreanChem. Soc. 2003, 24, 1659. https://doi.org/10.5012/bkcs.2003.24.11.1659
  18. Ishizaka, A.; Shiraki, Y. J. Electrochem. Soc. 1986, 133, 666. https://doi.org/10.1149/1.2108651
  19. Sung, M. M.; Yun, W. J.; Lee, S. S.; Kim, Y. Bull. Korean Chem.Soc. 2003, 24, 610. https://doi.org/10.5012/bkcs.2003.24.5.610
  20. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbookof X-ray Photoelectron Spectroscopy; Physical Electronics,Inc.: USA, 1995.
  21. Briggs, D.; Seah, M. P. Practical Surface Analysis; John Willy &Sons Ltd.: England, 1990.

Cited by

  1. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process vol.97, pp.12, 2005, https://doi.org/10.1063/1.1940727
  2. vol.24, pp.17, 2012, https://doi.org/10.1021/cm301594p
  3. Mechanical properties of atomic layer deposition-reinforced nanoparticle thin films vol.4, pp.20, 2012, https://doi.org/10.1039/c2nr32016a
  4. Photo-induced hydrophilicity and self-cleaning: models and reality vol.5, pp.6, 2012, https://doi.org/10.1039/c2ee03390a
  5. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends vol.113, pp.2, 2013, https://doi.org/10.1063/1.4757907
  6. Aqueous route to TiO2-based nanomaterials using pH-neutral carboxylate precursors vol.68, pp.3, 2013, https://doi.org/10.1007/s10971-013-2983-z
  7. Atomic Layer Deposition of Groups 4 and 5 Transition Metal Oxide Thin Films: Focus on Heteroleptic Precursors vol.20, pp.7-8-9, 2014, https://doi.org/10.1002/cvde.201400055
  8. Heteroleptic Group 2 Metal Precursors for Metal Oxide Thin Films vol.2014, pp.11, 2014, https://doi.org/10.1002/ejic.201301296
  9. Heteroleptic strontium complexes stabilized by donor-functionalized alkoxide and β-diketonate ligands vol.44, pp.31, 2015, https://doi.org/10.1039/C5DT01356A
  10. New heteroleptic magnesium complexes for MgO thin film application vol.44, pp.5, 2015, https://doi.org/10.1039/C4DT03497J
  11. thin films employing a new Ti-precursor vol.4, pp.5, 2016, https://doi.org/10.1039/C5TC03385C
  12. Insulating Stack for Simultaneous Filamentary and Distributed Resistive Switching vol.27, pp.33, 2017, https://doi.org/10.1002/adfm.201700384
  13. Thermal and Plasma-Enhanced ALD of Ta and Ti Oxide Thin Films from Alkylamide Precursors vol.9, pp.6, 2006, https://doi.org/10.1149/1.2186427
  14. Synthesis and characterisation of new titanium amino-alkoxides: precursors for the formation of TiO2 materials vol.2008, pp.5, 2004, https://doi.org/10.1039/b712375b
  15. Atomic Layer Deposition of HfO[sub 2], TiO[sub 2], and Hf[sub x]Ti[sub 1−x]O[sub 2] Using Metal (Diethylamino) Precursors and H[sub 2]O vol.158, pp.2, 2011, https://doi.org/10.1149/1.3522758
  16. Titanium dioxide thin films by atomic layer deposition: a review vol.32, pp.9, 2017, https://doi.org/10.1088/1361-6641/aa78ce
  17. Selective Atomic Layer Deposition Mechanism for Titanium Dioxide Films with (EtCp)Ti(NMe2)3: Ozone versus Water vol.30, pp.3, 2018, https://doi.org/10.1021/acs.chemmater.7b04790
  18. Quantifying the Extent of Ligand Incorporation and the Effect on Properties of TiO2 Thin Films Grown by Atomic Layer Deposition Using an Alkoxide or an Alkylamide vol.32, pp.4, 2004, https://doi.org/10.1021/acs.chemmater.9b03621
  19. Synthesis and Crystal Structures of New Strontium Complexes with Aminoalkoxy and β-Diketonato Ligands vol.6, pp.24, 2004, https://doi.org/10.1021/acsomega.1c01624
  20. Study of titanium amino-alkoxide derivatives as TiO2 Chemical Beam Vapour Deposition precursor vol.277, pp.None, 2004, https://doi.org/10.1016/j.matchemphys.2021.125561