DOI QR코드

DOI QR Code

Sizes and Structures of Micelles of Cationic Octadecyl Trimethyl Ammonium Chloride and Anionic Ammonium Dodecyl Sulfate Surfactants in Aqueous Solutions

  • Kim, Hong-Un (Department of Chemical Engineering, Chung-Ang University) ;
  • Lim, Kyung-Hee (Department of Chemical Engineering, Chung-Ang University)
  • Published : 2004.03.20

Abstract

The sizes and structures of micelles formed in aqueous solutions of cationic octadecyl trimethyl ammonium chloride (OTAC) and anionic ammonium dodecyl sulfate (ADS) surfactants were investigated using smallangle neutron scattering (SANS), self-diffusion coefficients by pulsed-gradient spin-echo (PGSE) NMR, and dynamic light scattering (DLS) methods. SANS and DLS data indicate that their structures are spherical at concentrations as high as 300 mM. As the total surfactant concentration increases, the peaks of SANS spectra shift to higher scattering vector and become sharper, indicating that the intermicellar distance decreases and its distribution becomes narrower. This is due to more compact packing of surfactant molecules at high concentrations. The intermicellar distance of around 100 ${\AA}$ above 200 mM corresponds approximately to the diameter of one micelle. The sizes of spherical micelles are 61 ${\AA}$ and 41 ${\AA}$ for 9 mM OTAC and 10 mM ADS, respectively. Also the self-diffusion coefficients by PGSE-NMR yield the apparent sizes 96 ${\AA}$ and 31 ${\AA}$ for micelles of 1 mM OTAC and 10 mM ADS, respectively. For ADS solutions of high concentrations (100-300 mM), DLS data show that the micelle size remains constant at $25{\pm}2{\AA}$. This indicates that the transition in micellar shape does not take place up to 300 mM, which is consistent with the SANS results.

Keywords

References

  1. Courchene, W. L. J. Phys. Chem. 1964, 68, 1870. https://doi.org/10.1021/j100789a034
  2. Iwadare, Y.; Suzawa, T. Nippon Kagaku Zasshi 1969, 90, 1106. https://doi.org/10.1246/nikkashi1948.90.11_1106
  3. Benedough, D.; Chen, S.-H.; Koeler, W. C. J. Phys. Chem. 1983,87, 2621. https://doi.org/10.1021/j100237a030
  4. Chevalier, Y.; Chachaty, C. Colloid Polym. Sci. 1984, 262, 489. https://doi.org/10.1007/BF01412046
  5. Misselyn-Bauduin, A.-M.; Thibaut, A.; Grandjean, J.; Broze, G.;Jerome, R. J. Colloid Interface Sci. 2001, 238, 1. https://doi.org/10.1006/jcis.2001.7451
  6. Walther, K. L.; Gradzielski, M.; Hoffmann, H.; Wakaun, A. J.Colloid Interface Sci. 1992, 153, 272. https://doi.org/10.1016/0021-9797(92)90318-G
  7. Kang, K.-H.; Kim, H.-U.; Lim, K.-H. Colloid Surf. A 2001, 189,113. https://doi.org/10.1016/S0927-7757(01)00577-5
  8. Armarego, W. L. F.; Perrin, D. D. In Purification of LaboratoryChemicals, 4th ed.; Butterworth-Heinemann: Oxford, 1996.
  9. Korea Atomic Energy Research Institute, In Computing Guide forHanaro Small-Angle Scattering Data Treatment, 2002.
  10. Guinier, A.; Fournet, G. In Small-Angle Scattering of X-Rays;John Wiley & Sons: New York, 1955.
  11. Feigin, L. A.; Svergun, D. I. In Structure Analysis by Small-AngleX-Ray and Neutron Scattering; Taylor, G. W., Ed.; Plenum Press:New York and London, 1987; pp 68-69.
  12. Porod, G. In Small-Angle X-Ray Scattering; Glatter, O.; Kratky,O., Ed.; Academic Press: New York, 1982; p 17.
  13. Pedersen, J. S.; Egelhaaf, S. U.; Schurtenberger, P. J. Phys. Chem.1995, 99, 1299. https://doi.org/10.1021/j100004a033
  14. Lin, M. Y.; Hanley, H. J. M.; Sinha, S. K.; Straty, G. C.; Peiffer, D.G.; Kim, M. W. Physica B 1995, 213-214, 613. https://doi.org/10.1016/0921-4526(95)00228-2
  15. Holtzer, A. J. Polym. Sci. 1995, 17, 432. https://doi.org/10.1002/pol.1955.120178515
  16. Denkinger, P.; Burchard, W. J. Polym. Sci. B, Polym. Phys. 1991,29, 589. https://doi.org/10.1002/polb.1991.090290508
  17. Kato, T. J. Phys. Chem. 1985, 89, 5750. https://doi.org/10.1021/j100272a035
  18. Braun, S.; Kalinowski, H.-O.; Berger, S. In 100 and More BasicNMR Experiments; A Practical Course; VCH: 1999; Ch.11, pp349-351.
  19. Lindman, B.; Olsson, U.; Soderman, O. In Handbook of MicroemulsionScience and Technology; 1998; Ch.10, pp 309-356.
  20. Walderhaug, H.; Nystrom, B. Colloid Surf. A 1999, 149, 379. https://doi.org/10.1016/S0927-7757(98)00415-4
  21. Annunziata, O.; Costantino, L.; D'Errico, G.; Paduano, L.;Vitagliano, V. J. Colloid Interface Sci. 1999, 216, 16. https://doi.org/10.1006/jcis.1999.6269
  22. Caria, A.; Regev, O.; Khan, A. J. Colloid Interface Sci. 1998, 200,19. https://doi.org/10.1006/jcis.1997.5310
  23. Bruker Co., Almanac, 2001; p 72.
  24. Weingartner, H. Z. Phys. Chem. (Neue Folge) 1982, 132, 129. https://doi.org/10.1524/zpch.1982.132.2.129
  25. Holz, M.; Weingartner, H. J. Magn. Reson. 1991, 92, 115.
  26. Israelachvili, J. N. In Intermolecular and Surface Forces, 2nd Ed.;Academic Press: London, 1991.
  27. Tanford, C. J. Phys. Chem. 1974, 78, 2469. https://doi.org/10.1021/j100617a012
  28. Kim, H.-U. Ph.D Dissertation; Chung-Ang University: Korea, 2002.
  29. Jonsson, B.; Lindmann, B.; Holmberg, K.; Kronberg, B. InSurfactants and Polymers in Aqueous Solutions; John Wiley andSons: New York, 1997; pp 84-100.
  30. Cabane, B.; Duplessix, R.; Zemb, T. J. Phys. 1985, 46, 2161. https://doi.org/10.1051/jphys:0198500460120216100
  31. Forland, G. M.; Sameth, J.; Gjerde, M. I.; Hfiland, H.; Jensen, A.F.; Mortensen, K. J. Colloid Interface Sci. 1998, 203, 328. https://doi.org/10.1006/jcis.1998.5539
  32. Grabner, D.; Matsuo, T.; Hoinkis, E.; Thunig, C.; Hoffmann, H. J.Colloid Interface Sci. 2001, 236, 1. https://doi.org/10.1006/jcis.2000.7388
  33. Kim, H. U. Ph. D. Dissertation; Chung-Ang University: Seoul,Korea, 2002; p166.
  34. Reiss-Husson, F.; Luzzati, V. J. Phys. Chem. 1964, 86, 3504.

Cited by

  1. Foaming in Micellar Solutions: Effects of Surfactant, Salt, and Oil Concentrations vol.53, pp.48, 2014, https://doi.org/10.1021/ie503591v
  2. Liquid Polyamorphous Transition and Self-Organization in Aqueous Solutions of Ionic Surfactants vol.31, pp.31, 2015, https://doi.org/10.1021/acs.langmuir.5b00479
  3. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY vol.32, pp.3, 2015, https://doi.org/10.1590/0104-6632.20150323s00003642
  4. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis vol.12, pp.39, 2016, https://doi.org/10.1039/C6SM01791F
  5. Synthesis and characterization of a new polymeric surfactant for chemical enhanced oil recovery vol.33, pp.2, 2016, https://doi.org/10.1007/s11814-015-0186-8
  6. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants vol.144, pp.23, 2016, https://doi.org/10.1063/1.4954063
  7. Spontaneous Vesicle Formation in Aqueous Mixtures of Cationic Gemini Surfactant and Sodium Lauryl Ether Sulfate vol.26, pp.1, 2004, https://doi.org/10.5012/bkcs.2005.26.1.107
  8. Diffusion-Ordered NMR Spectroscopy of Poly([ethylene-co-vinyl acetate]-graft-vinyl chloride) in Solution vol.26, pp.2, 2004, https://doi.org/10.5012/bkcs.2005.26.2.331
  9. SANS Studies on the Formation of PANI Nanoparticles in the Reverse Micelles vol.27, pp.2, 2004, https://doi.org/10.5012/bkcs.2006.27.2.251
  10. Molecular Thermodynamic Modeling of Specific Ion Effects on Micellization of Ionic Surfactants vol.26, pp.19, 2004, https://doi.org/10.1021/la102536y
  11. A SANS study for structural transition of micelles of cationic octadecyl trimethyl ammonium chloride and anionic ammonium dodecyl sulfate surfactants in aqueous solutions vol.391, pp.1, 2004, https://doi.org/10.1016/j.colsurfa.2011.05.060
  12. Molecular mechanism of micellar catalysis of cross aldol reaction: Effect of surfactant chain length and surfactant concentration vol.396, pp.None, 2004, https://doi.org/10.1016/j.molcata.2014.09.023
  13. Raman Spectroscopy of Micellization-Induced Liquid-Liquid Fluctuations in Sodium Dodecyl Sulfate Aqueous Solutions vol.204, pp.None, 2015, https://doi.org/10.1016/j.molliq.2015.01.021
  14. Surface tension, dynamic light scattering and rheological studies of a new polymeric surfactant for application in enhanced oil recovery vol.146, pp.None, 2016, https://doi.org/10.1016/j.petrol.2016.07.023
  15. Nanohybrid Catalysts for Efficient Synthesis of Hydrogen Peroxide at Ambient Temperature and Pressure vol.123, pp.15, 2004, https://doi.org/10.1021/acs.jpcc.9b00381
  16. Molecular Dynamics Simulations of Micelle Properties and Behaviors of Sodium Lauryl Ether Sulfate Penetrating Ceramide and Phospholipid Bilayers vol.124, pp.28, 2004, https://doi.org/10.1021/acs.jpcb.0c02856