References
- Courchene, W. L. J. Phys. Chem. 1964, 68, 1870. https://doi.org/10.1021/j100789a034
- Iwadare, Y.; Suzawa, T. Nippon Kagaku Zasshi 1969, 90, 1106. https://doi.org/10.1246/nikkashi1948.90.11_1106
- Benedough, D.; Chen, S.-H.; Koeler, W. C. J. Phys. Chem. 1983,87, 2621. https://doi.org/10.1021/j100237a030
- Chevalier, Y.; Chachaty, C. Colloid Polym. Sci. 1984, 262, 489. https://doi.org/10.1007/BF01412046
- Misselyn-Bauduin, A.-M.; Thibaut, A.; Grandjean, J.; Broze, G.;Jerome, R. J. Colloid Interface Sci. 2001, 238, 1. https://doi.org/10.1006/jcis.2001.7451
- Walther, K. L.; Gradzielski, M.; Hoffmann, H.; Wakaun, A. J.Colloid Interface Sci. 1992, 153, 272. https://doi.org/10.1016/0021-9797(92)90318-G
- Kang, K.-H.; Kim, H.-U.; Lim, K.-H. Colloid Surf. A 2001, 189,113. https://doi.org/10.1016/S0927-7757(01)00577-5
- Armarego, W. L. F.; Perrin, D. D. In Purification of LaboratoryChemicals, 4th ed.; Butterworth-Heinemann: Oxford, 1996.
- Korea Atomic Energy Research Institute, In Computing Guide forHanaro Small-Angle Scattering Data Treatment, 2002.
- Guinier, A.; Fournet, G. In Small-Angle Scattering of X-Rays;John Wiley & Sons: New York, 1955.
- Feigin, L. A.; Svergun, D. I. In Structure Analysis by Small-AngleX-Ray and Neutron Scattering; Taylor, G. W., Ed.; Plenum Press:New York and London, 1987; pp 68-69.
- Porod, G. In Small-Angle X-Ray Scattering; Glatter, O.; Kratky,O., Ed.; Academic Press: New York, 1982; p 17.
- Pedersen, J. S.; Egelhaaf, S. U.; Schurtenberger, P. J. Phys. Chem.1995, 99, 1299. https://doi.org/10.1021/j100004a033
- Lin, M. Y.; Hanley, H. J. M.; Sinha, S. K.; Straty, G. C.; Peiffer, D.G.; Kim, M. W. Physica B 1995, 213-214, 613. https://doi.org/10.1016/0921-4526(95)00228-2
- Holtzer, A. J. Polym. Sci. 1995, 17, 432. https://doi.org/10.1002/pol.1955.120178515
- Denkinger, P.; Burchard, W. J. Polym. Sci. B, Polym. Phys. 1991,29, 589. https://doi.org/10.1002/polb.1991.090290508
- Kato, T. J. Phys. Chem. 1985, 89, 5750. https://doi.org/10.1021/j100272a035
- Braun, S.; Kalinowski, H.-O.; Berger, S. In 100 and More BasicNMR Experiments; A Practical Course; VCH: 1999; Ch.11, pp349-351.
- Lindman, B.; Olsson, U.; Soderman, O. In Handbook of MicroemulsionScience and Technology; 1998; Ch.10, pp 309-356.
- Walderhaug, H.; Nystrom, B. Colloid Surf. A 1999, 149, 379. https://doi.org/10.1016/S0927-7757(98)00415-4
- Annunziata, O.; Costantino, L.; D'Errico, G.; Paduano, L.;Vitagliano, V. J. Colloid Interface Sci. 1999, 216, 16. https://doi.org/10.1006/jcis.1999.6269
- Caria, A.; Regev, O.; Khan, A. J. Colloid Interface Sci. 1998, 200,19. https://doi.org/10.1006/jcis.1997.5310
- Bruker Co., Almanac, 2001; p 72.
- Weingartner, H. Z. Phys. Chem. (Neue Folge) 1982, 132, 129. https://doi.org/10.1524/zpch.1982.132.2.129
- Holz, M.; Weingartner, H. J. Magn. Reson. 1991, 92, 115.
- Israelachvili, J. N. In Intermolecular and Surface Forces, 2nd Ed.;Academic Press: London, 1991.
- Tanford, C. J. Phys. Chem. 1974, 78, 2469. https://doi.org/10.1021/j100617a012
- Kim, H.-U. Ph.D Dissertation; Chung-Ang University: Korea, 2002.
- Jonsson, B.; Lindmann, B.; Holmberg, K.; Kronberg, B. InSurfactants and Polymers in Aqueous Solutions; John Wiley andSons: New York, 1997; pp 84-100.
- Cabane, B.; Duplessix, R.; Zemb, T. J. Phys. 1985, 46, 2161. https://doi.org/10.1051/jphys:0198500460120216100
- Forland, G. M.; Sameth, J.; Gjerde, M. I.; Hfiland, H.; Jensen, A.F.; Mortensen, K. J. Colloid Interface Sci. 1998, 203, 328. https://doi.org/10.1006/jcis.1998.5539
- Grabner, D.; Matsuo, T.; Hoinkis, E.; Thunig, C.; Hoffmann, H. J.Colloid Interface Sci. 2001, 236, 1. https://doi.org/10.1006/jcis.2000.7388
- Kim, H. U. Ph. D. Dissertation; Chung-Ang University: Seoul,Korea, 2002; p166.
- Reiss-Husson, F.; Luzzati, V. J. Phys. Chem. 1964, 86, 3504.
Cited by
- Foaming in Micellar Solutions: Effects of Surfactant, Salt, and Oil Concentrations vol.53, pp.48, 2014, https://doi.org/10.1021/ie503591v
- Liquid Polyamorphous Transition and Self-Organization in Aqueous Solutions of Ionic Surfactants vol.31, pp.31, 2015, https://doi.org/10.1021/acs.langmuir.5b00479
- SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY vol.32, pp.3, 2015, https://doi.org/10.1590/0104-6632.20150323s00003642
- Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis vol.12, pp.39, 2016, https://doi.org/10.1039/C6SM01791F
- Synthesis and characterization of a new polymeric surfactant for chemical enhanced oil recovery vol.33, pp.2, 2016, https://doi.org/10.1007/s11814-015-0186-8
- Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants vol.144, pp.23, 2016, https://doi.org/10.1063/1.4954063
- Spontaneous Vesicle Formation in Aqueous Mixtures of Cationic Gemini Surfactant and Sodium Lauryl Ether Sulfate vol.26, pp.1, 2004, https://doi.org/10.5012/bkcs.2005.26.1.107
- Diffusion-Ordered NMR Spectroscopy of Poly([ethylene-co-vinyl acetate]-graft-vinyl chloride) in Solution vol.26, pp.2, 2004, https://doi.org/10.5012/bkcs.2005.26.2.331
- SANS Studies on the Formation of PANI Nanoparticles in the Reverse Micelles vol.27, pp.2, 2004, https://doi.org/10.5012/bkcs.2006.27.2.251
- Molecular Thermodynamic Modeling of Specific Ion Effects on Micellization of Ionic Surfactants vol.26, pp.19, 2004, https://doi.org/10.1021/la102536y
- A SANS study for structural transition of micelles of cationic octadecyl trimethyl ammonium chloride and anionic ammonium dodecyl sulfate surfactants in aqueous solutions vol.391, pp.1, 2004, https://doi.org/10.1016/j.colsurfa.2011.05.060
- Molecular mechanism of micellar catalysis of cross aldol reaction: Effect of surfactant chain length and surfactant concentration vol.396, pp.None, 2004, https://doi.org/10.1016/j.molcata.2014.09.023
- Raman Spectroscopy of Micellization-Induced Liquid-Liquid Fluctuations in Sodium Dodecyl Sulfate Aqueous Solutions vol.204, pp.None, 2015, https://doi.org/10.1016/j.molliq.2015.01.021
- Surface tension, dynamic light scattering and rheological studies of a new polymeric surfactant for application in enhanced oil recovery vol.146, pp.None, 2016, https://doi.org/10.1016/j.petrol.2016.07.023
- Nanohybrid Catalysts for Efficient Synthesis of Hydrogen Peroxide at Ambient Temperature and Pressure vol.123, pp.15, 2004, https://doi.org/10.1021/acs.jpcc.9b00381
- Molecular Dynamics Simulations of Micelle Properties and Behaviors of Sodium Lauryl Ether Sulfate Penetrating Ceramide and Phospholipid Bilayers vol.124, pp.28, 2004, https://doi.org/10.1021/acs.jpcb.0c02856