References
- Wilddoeer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.;Dekker, C. Nature 1998, 391, 59. https://doi.org/10.1038/34139
- White, C. T.; Todorov, T. N. Nature 1998, 391, 59. https://doi.org/10.1038/34139
- Baker, R. K.; Harris, P. S. Chemistry and Physics of Carbon; NewYork, 1978; pp 83-87.
- Audier, M.; Coulon, M. Carbon 1985, 23, 317. https://doi.org/10.1016/0008-6223(85)90117-4
- Ijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
- Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. Appl. Phys. Lett.2000, 76, 2868. https://doi.org/10.1063/1.126500
- Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91. https://doi.org/10.1126/science.285.5424.91
- Trans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393,49. https://doi.org/10.1038/29954
- Saito, Y.; Hamaguchi, K.; Hata, K.; Uchida, K. 1997, 389,554.
- Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R.E. Nature 1996, 384, 147. https://doi.org/10.1038/384147a0
- Rodriguez, N. M. J. Mater. Res. 1993, 8, 3233. https://doi.org/10.1557/JMR.1993.3233
- Yan, H.; Li, Q.; Zhang, J.; Liu, Z. Chem. Phys. Lett. 2003, 380, 347. https://doi.org/10.1016/j.cplett.2003.09.031
- Pinheiro, P.; Schouler, M. C.; Gadelle, P.; Mermoux, M.;Dooryhee, E. Carbon 2000, 38, 1469. https://doi.org/10.1016/S0008-6223(00)00002-6
- Nolan, P. E. PhD Thesis, Hydrogen Control of Catalytic CarbonDeposition; University of Arizona, USA, 1995.
- Chen, P.; Zhang, H. B.; Lin, G. D.; Hong, Q.; Tsai, K. R. Carbon1997, 35, 1495. https://doi.org/10.1016/S0008-6223(97)00100-0
- Hernadi, K.; Fonseca, A.; Nagy, J. B.; Bernaerts, D.; Lucas, A. A.Carbon 1996, 34, 1249. https://doi.org/10.1016/0008-6223(96)00074-7
- Toan, Le. Q.; Schouler, M. C.; Garden, J.; Gadelle, P. Carbon1999, 37, 505. https://doi.org/10.1016/S0008-6223(98)00228-0
- Hwang, H. S.; Chung, U. C. Met. & Mater. Int. 2004, 10, 77. https://doi.org/10.1007/BF03027366
- Yongdan, L. Applied Catalysis A 1997, 163, 45. https://doi.org/10.1016/S0926-860X(97)00116-6
- Park, C.; Baker, R. T. K. J. Catalysis 1998, 179, 361. https://doi.org/10.1006/jcat.1998.2226
- Charanjeet, S.; Milo, S. P.; Alan, H. W. Carbon 2003, 41, 359. https://doi.org/10.1016/S0008-6223(02)00314-7
- Lijie, C.; Jinquan, W., et al. Carbon 2001, 39, 329. https://doi.org/10.1016/S0008-6223(00)00126-3
- Krishnankutty, N., et al. J. Catalysis 1996, 158, 217. https://doi.org/10.1006/jcat.1996.0021
Cited by
- Simple Catalyst for the Effective Growth of Carbon Nanotubes by CVD vol.111, pp.44, 2007, https://doi.org/10.1021/jp0727188
- Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO2/Si substrates vol.100, pp.1, 2010, https://doi.org/10.1007/s00339-010-5578-3
- Synthesis of Carbon Nanotubes and Volatile Organic Compounds Detection vol.39, pp.2261-236X, 2016, https://doi.org/10.1051/matecconf/20163901006
- Transmission Electron Microscopy vol.11, pp.5, 2017, https://doi.org/10.1021/acsnano.6b05941
- Catalytical activity of carbon nanotubes (CNTs) and Vulcan XC-72(VCB) carbon supported Ni catalysts for direct methanol fuel cells vol.13, pp.5, 2007, https://doi.org/10.1007/BF03027878
- Effect of hydrogen pretreatment on the spin-capability of a multiwalled carbon nanotube forest vol.31, pp.6, 2004, https://doi.org/10.1116/1.4825116
- Carbon Nanotubes: Synthesis via Chemical Vapour Deposition without Hydrogen, Surface Modification, and Application vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4260153
- Role of Mixed Oxides in Hydrogen Production through the Dry Reforming of Methane over Nickel Catalysts Supported on Modified γ-Al2O3 vol.9, pp.1, 2004, https://doi.org/10.3390/pr9010157