DOI QR코드

DOI QR Code

Effect of H2 on Formation Behavior of Carbon Nanotubes

  • Chung, Uoo-Chang (Trouble Analysis and Reliability Research Center, Pusan National University)
  • Published : 2004.10.20

Abstract

The effect of $H_2$ gas on the carbon nanotubes (CNTs) synthesis with CO-$H_2$ gas mixture was investigated using mass measurements and scanning electron microscopy (SEM). The maximum weight and yield of the synthesized carbon were obtained when the mixture ratio of $H_2$: CO was 3 : 7 and 9 : 1, respectively. In case of 100% carbon monoxide (CO) without hydrogen ($H_2$) addition, the weight of carbon increased, but CNTs were not observed. The CNTs began to be made when the contents of $H_2$ reaches at least 10%, their structures became more distinct with an increase of $H_2$ addition, and then the shapes of CNTs were more thin and straight. When the contents of $H_2$ was 80% ($H_2$ : CO = 8 : 2), the shapes and growth of CNTs showed an optimal condition. On the other hand, when the contents of $H_2$ was higher than the critical value, the shapes of CNTs became worse due to transition into inactive surface of catalyst. It was considered that the inactive surface of catalyst resulted from decrease of carbon (C) and $H_2$ concentration by facilitation of methane ($CH_4$) gasification reaction (C + 2$H_2$ ${\rightarrow}$ $CH_4$) between C and $H_2$ gases. It was also found that H2 addition had an influence considerably on the shape and structure of CNTs.

Keywords

References

  1. Wilddoeer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.;Dekker, C. Nature 1998, 391, 59. https://doi.org/10.1038/34139
  2. White, C. T.; Todorov, T. N. Nature 1998, 391, 59. https://doi.org/10.1038/34139
  3. Baker, R. K.; Harris, P. S. Chemistry and Physics of Carbon; NewYork, 1978; pp 83-87.
  4. Audier, M.; Coulon, M. Carbon 1985, 23, 317. https://doi.org/10.1016/0008-6223(85)90117-4
  5. Ijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  6. Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. Appl. Phys. Lett.2000, 76, 2868. https://doi.org/10.1063/1.126500
  7. Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91. https://doi.org/10.1126/science.285.5424.91
  8. Trans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393,49. https://doi.org/10.1038/29954
  9. Saito, Y.; Hamaguchi, K.; Hata, K.; Uchida, K. 1997, 389,554.
  10. Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R.E. Nature 1996, 384, 147. https://doi.org/10.1038/384147a0
  11. Rodriguez, N. M. J. Mater. Res. 1993, 8, 3233. https://doi.org/10.1557/JMR.1993.3233
  12. Yan, H.; Li, Q.; Zhang, J.; Liu, Z. Chem. Phys. Lett. 2003, 380, 347. https://doi.org/10.1016/j.cplett.2003.09.031
  13. Pinheiro, P.; Schouler, M. C.; Gadelle, P.; Mermoux, M.;Dooryhee, E. Carbon 2000, 38, 1469. https://doi.org/10.1016/S0008-6223(00)00002-6
  14. Nolan, P. E. PhD Thesis, Hydrogen Control of Catalytic CarbonDeposition; University of Arizona, USA, 1995.
  15. Chen, P.; Zhang, H. B.; Lin, G. D.; Hong, Q.; Tsai, K. R. Carbon1997, 35, 1495. https://doi.org/10.1016/S0008-6223(97)00100-0
  16. Hernadi, K.; Fonseca, A.; Nagy, J. B.; Bernaerts, D.; Lucas, A. A.Carbon 1996, 34, 1249. https://doi.org/10.1016/0008-6223(96)00074-7
  17. Toan, Le. Q.; Schouler, M. C.; Garden, J.; Gadelle, P. Carbon1999, 37, 505. https://doi.org/10.1016/S0008-6223(98)00228-0
  18. Hwang, H. S.; Chung, U. C. Met. & Mater. Int. 2004, 10, 77. https://doi.org/10.1007/BF03027366
  19. Yongdan, L. Applied Catalysis A 1997, 163, 45. https://doi.org/10.1016/S0926-860X(97)00116-6
  20. Park, C.; Baker, R. T. K. J. Catalysis 1998, 179, 361. https://doi.org/10.1006/jcat.1998.2226
  21. Charanjeet, S.; Milo, S. P.; Alan, H. W. Carbon 2003, 41, 359. https://doi.org/10.1016/S0008-6223(02)00314-7
  22. Lijie, C.; Jinquan, W., et al. Carbon 2001, 39, 329. https://doi.org/10.1016/S0008-6223(00)00126-3
  23. Krishnankutty, N., et al. J. Catalysis 1996, 158, 217. https://doi.org/10.1006/jcat.1996.0021

Cited by

  1. Simple Catalyst for the Effective Growth of Carbon Nanotubes by CVD vol.111, pp.44, 2007, https://doi.org/10.1021/jp0727188
  2. Carbon nanotube diameter tuning using hydrogen amount and temperature on SiO2/Si substrates vol.100, pp.1, 2010, https://doi.org/10.1007/s00339-010-5578-3
  3. Synthesis of Carbon Nanotubes and Volatile Organic Compounds Detection vol.39, pp.2261-236X, 2016, https://doi.org/10.1051/matecconf/20163901006
  4. Transmission Electron Microscopy vol.11, pp.5, 2017, https://doi.org/10.1021/acsnano.6b05941
  5. Catalytical activity of carbon nanotubes (CNTs) and Vulcan XC-72(VCB) carbon supported Ni catalysts for direct methanol fuel cells vol.13, pp.5, 2007, https://doi.org/10.1007/BF03027878
  6. Effect of hydrogen pretreatment on the spin-capability of a multiwalled carbon nanotube forest vol.31, pp.6, 2004, https://doi.org/10.1116/1.4825116
  7. Carbon Nanotubes: Synthesis via Chemical Vapour Deposition without Hydrogen, Surface Modification, and Application vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4260153
  8. Role of Mixed Oxides in Hydrogen Production through the Dry Reforming of Methane over Nickel Catalysts Supported on Modified γ-Al2O3 vol.9, pp.1, 2004, https://doi.org/10.3390/pr9010157