DOI QR코드

DOI QR Code

meso-Substituted Dipyrromethanes from Vinylogous Aromatic Heterocycles and Their Utilization to the Synthesis of meso-Functionalized Porphyrins

  • Hong, Seong-Jin (Institute of Basic Science and Department of Chemistry, Kangwon National University) ;
  • Lee, Mi-Hye (Institute of Basic Science and Department of Chemistry, Kangwon National University) ;
  • Lee, Chang-Hee (Institute of Basic Science and Department of Chemistry, Kangwon National University)
  • Published : 2004.10.20

Abstract

meso-Functionalized dipyrromethanes 6-10 were synthesized by acid-catalyzed addition of pyrrole to ${\alpha}$-position of 2-alkenyl pyrroles. The regiochemistry of the reaction can be explained by either the formation of more stable carbocation intermediate or ${\beta}$-addition of ${\alpha},{\beta}$-unsaturated carbonyl compounds. The starting 2-alkenyl pyrroles were synthesized by Aldol condensation of 2-formylpyrrole with active methylene compounds such as nitromethane, diethylmalonate and malononitrile. Attempted ‘2+2' condensation of meso-diethylmalonyldipyrromethane, meso-(p-tolyl)dipyrromethane and p-tolualdehyde afforded three different porphyrins 12, 13 and 14 in reasonable yields. On the other hand, meso-(nitromethyl)dipyrromethane with p-(tbutyl) benzaldehyde resulted in the formation of three different porphyrins such as 5,15-dicyano-10,20-diarylporphyrin (16), 5-cyano-15-formyl-10,20-diarylporphyrin (17) and 5,15-diformyl-10,20-diarylporphyrin (18) in low yields. Conversion of nitromethyl groups to nitrile and (or) formyl group was observed under the porphyrin forming conditions.

Keywords

References

  1. Lindsey, J. S. In The Porphyrin Handbook; Kadish, K. M., Smith,K. M., Guilard, R., Eds. Academic press: San Diego, CA. 2000;Vol. 1, pp 45-118.
  2. Lindsey, J. S. The Synthesis of Meso-Substituted Porphyrins inMetalloporphyrin-Catalyzed Oxidations; Montanari, F.; Casella,L., Eds.: Kluwer Academic Publishers: The Netherlands, 1994; pp49-86.
  3. Lindsey, J. S.; MacCrum, K. A.; Tyhonas, J. S.; Chuang, Y.-Y. J.Org. Chem. 1994, 59, 579-587. https://doi.org/10.1021/jo00082a014
  4. Lindsey, J. S.; Wagner, R. W. J. Org. Chem. 1989, 54, 828-836. https://doi.org/10.1021/jo00265a021
  5. Rao, P. D.; Littler, B. J.; Geier III, G. R.; Lindsey, J. S. J. Org.Chem. 2000, 65, 1084-1092. https://doi.org/10.1021/jo9915473
  6. Ka, J. W.; Lee, C. H. Tetrahedron Lett. 2001, 42, 4527-4529. https://doi.org/10.1016/S0040-4039(01)00783-3
  7. Strachan, J. P.; O'Shea, D. F.; Balasubramanian, T.; Lindsey, J. S.J. Org. Chem. 2000, 65, 3160-3172. https://doi.org/10.1021/jo991942t
  8. Burn, D. H.; Smith, K. M. J. Chem. Res. (S) 1990, 178-179.
  9. Paine III, J. B.; Dolphin, D. J. Org. Chem. 1988, 53, 2787-2795. https://doi.org/10.1021/jo00247a024
  10. Wijesekera, T. P.; Paine III, J. B.; Dolphin, D. J. Org. Chem.1985, 50, 3832-3838. https://doi.org/10.1021/jo00220a030
  11. Paine III, J. B.; Woodward, R. B.; Dolphin, D. J. Org. Chem.1976, 41, 2826-2835. https://doi.org/10.1021/jo00879a009
  12. Settambolo, R.; Lazzaroni, R.; Messeri,T.; Mazzetti, M.; Salvadori, P. J. Org. Chem. 1993, 58, 7899-7902. https://doi.org/10.1021/jo00079a040
  13. Vicente, M. G. H.; Smith, K. M. J. Org. Chem. 1991, 56, 4407-4418. https://doi.org/10.1021/jo00014a016
  14. Lee, C. H.; Lindsey, J. S. Tetrahedron 1994, 50, 11427-11440. https://doi.org/10.1016/S0040-4020(01)89282-6
  15. Littler, B. J.; Miller, M. A.; Hung, C. H.; Wagner, R. W.;O'Shea, D. F.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 1999, 64,1391-1396. https://doi.org/10.1021/jo982015+
  16. Yadav, J. S.; Abraham, S.; Subba Reddy, B. V.; Sabitha, G.Tetrahedron Lett. 2001, 42, 8063-8065. https://doi.org/10.1016/S0040-4039(01)01697-5
  17. Kawakami, T.; Suzuki, H. Tetraheron Lett. 1999, 40, 1157-1160. https://doi.org/10.1016/S0040-4039(98)02552-0
  18. Rao, P. D.; Dhanalekshmi, S.; Littler, B. J.; Lindsey, J. S. J. Org.Chem. 2000, 65, 7323-7344. https://doi.org/10.1021/jo000882k
  19. Matt, C.; Wagner, A.; Mioskowski, C. J. Org. Chem. 1997, 62,234-235. https://doi.org/10.1021/jo962110n
  20. Pinnick, H. W. Org. React. 1990, 38, 655-792.
  21. Ballini, R.; Petrini, M. Tetrahedron 2004, 60, 1017-1047. https://doi.org/10.1016/j.tet.2003.11.016
  22. Nishino, N.; Wagner, R. W.; Lindsey, J. S. J. Org. Chem. 1996, 61,7534-7544. https://doi.org/10.1021/jo9611576

Cited by

  1. -Alkylidenyl Double Bonds. A New Family of Nonplanar Porphyrinoids vol.8, pp.15, 2006, https://doi.org/10.1021/ol0612307
  2. 5-Substituted dipyrranes: synthesis and reactivity vol.41, pp.10, 2012, https://doi.org/10.1039/c2cs00003b
  3. H-functionalized ionic liquid vol.14, pp.4, 2016, https://doi.org/10.1039/C5OB01953B
  4. Nucleophilic Aromatic Substitution on Pentafluorophenyl-Substituted Dipyrranes and Tetrapyrroles as a Route to Multifunctionalized Chromophores for Potential Application in Photodynamic Therapy vol.22, pp.39, 2016, https://doi.org/10.1002/chem.201601857
  5. Design, synthesis and cytotoxic evaluation of β-aryl-α-dimethoxyphosphoryl-γ-lactams vol.26, pp.5, 2017, https://doi.org/10.1007/s00044-017-1816-y
  6. Microwave-Assisted Synthesis of 2-(2-Nitroethenly)thiophene from 2-Thiophenecarboxaldehyde and Nitromethane vol.268-270, pp.1662-7482, 2012, https://doi.org/10.4028/www.scientific.net/AMM.268-270.500
  7. B-porphyrins vol.42, pp.17, 2018, https://doi.org/10.1039/C8NJ01798K
  8. meso-Substituted Dipyrromethanes from Vinylogous Aromatic Heterocycles and Their Utilization to the Synthesis of meso-Functionalized Porphyrins. vol.36, pp.13, 2005, https://doi.org/10.1002/chin.200513121
  9. Superior Anion-Binding Properties of a Cryptand-like Oligopyrrolic Macrocycle vol.5, pp.4, 2010, https://doi.org/10.1002/asia.200900518
  10. Synthetic transformations of porphyrins - Advances 2004-2007 vol.12, pp.10, 2004, https://doi.org/10.1142/s108842460800042x
  11. Synthesis, molecular structure, multiple interactions and chemical reactivity analysis of a novel ethyl 2-cyano-3-[5-(hydrazinooxalyl-hydrazonomethyl)-1H-pyrrol-2-yl]-acrylate and its dimer: A combine vol.1037, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2013.01.011
  12. 5-Methyl-5-aryldipyrromethanes: synthesis, crystal structure and anion binding studies vol.25, pp.8, 2004, https://doi.org/10.1080/10610278.2013.794280
  13. Synthesis, molecular structure, hydrogen-bonding and chemical reactivity analysis of 1,9-bis(2-cyano-2-ethoxycarbonylvinyl)-5-(2-chlorophenyl)-dipyrromethane: A combined experimental and theoretical a vol.1047, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2013.04.056
  14. Study of spectroscopic, reactivity and NLO properties of synthesized dipyrromethane containing cyanovinylhydrazide using experimental and theoretical approaches vol.1048, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2013.06.001
  15. Study of spectroscopic, reactivity and NLO properties of synthesized dipyrromethane containing cyanovinylhydrazide using experimental and theoretical approaches vol.1048, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2013.06.001
  16. Studies on molecular structure, spectral analysis, chemical reactivity and first hyperpolarizability of a newly synthesized 1,9-bis[(4-isonicotinoyl)-hydrazonomethyl]-5-phenyl-dipyrromethane using exp vol.1052, pp.None, 2004, https://doi.org/10.1016/j.molstruc.2013.08.037
  17. Molecular structure, hydrogen-bonding, chemical reactivity and first hyperpolarizability analysis of a new synthesized 1,9-bis(2-cyano-2-ethoxycarbonylvinyl)-5-(2-nitrophenyl)-dipyrromethane: Experime vol.1052, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2013.08.050
  18. Synthesis, molecular structure, photoluminescence, multiple interaction, chemical reactivity and first hyperpolarizability analysis of ethyl 2-cyano-3-{5-(4-methylbenzenesulfonyl)-hydrazonomethyl]-1H- vol.1061, pp.None, 2014, https://doi.org/10.1016/j.molstruc.2013.12.080
  19. Spectroscopic, reactivity and NLO analysis of new hydrazone-containing dipyrromethane using experimental and theoretical approaches vol.1067, pp.None, 2004, https://doi.org/10.1016/j.molstruc.2014.03.007
  20. Recent Developments in the Synthesis of Dipyrromethanes. A Review vol.46, pp.3, 2004, https://doi.org/10.1080/00304948.2014.903140
  21. DABCO promoted one-pot synthesis of dihydropyrano(c)chromene and pyrano[2,3-d]pyrimidine derivatives and their biological activities vol.18, pp.5, 2004, https://doi.org/10.1016/j.jscs.2011.10.023
  22. Experimental and DFT study on pyrrole tosylhydrazones vol.1081, pp.None, 2015, https://doi.org/10.1016/j.molstruc.2014.10.046
  23. Experimental and DFT study on a newly synthesized ethyl 2-cyano-3-[5-(phenyl-hydrazonomethyl)-1H-pyrrol-2-yl]-acrylate vol.1081, pp.None, 2015, https://doi.org/10.1016/j.molstruc.2014.10.047