DOI QR코드

DOI QR Code

Spontaneous Formation of Revival Waves in the 1,4-Cyclohexanedione-Bromate-Ferroin Reaction

  • Published : 2004.02.20

Abstract

The bromate-1,4-cyclohexanedione-ferroin oscillating reactions are uncovered to support two types of wave activities, in which spontaneous formation of circular waves has been achieved after the disappearance of initial waves. The induction period of the revival wave is typically above 10 hours and its dependence on the initial concentrations of reactants is qualitatively different from that of initial waves. In addition to their differences in propagating speed and wavelength, the initial waves and the revival patterns have different colors, suggesting that different reaction mechanisms are involved in the formation of these spatiotemporal behaviors. Our experiments further show that the addition of hydroquinone to the reacting system can significantly shorten the induction time of the revival wave, which implicates that hydroquinone is not only a product in the bromate-1,4-cyclohexanedione-ferroin oscillating reaction but also plays a critical role in the following reactions.

Keywords

References

  1. Chemical Waves and Patterns; Kapral, R.; Showalther, K., Eds.;Kluwer Academic Publishers: Netherland, 1995.
  2. Cross, M. C.; Hohenberg, P. C. Rev. Mod. Phys. 1993, 65, 851. https://doi.org/10.1103/RevModPhys.65.851
  3. Swinney, H. L.; Krinsky, V. I. Physica D 1991, 49, 7.
  4. Winfree, A. T. The Geometry of Biological Time; Springer:Heidelbers, 2000.
  5. Oscillations and Traveling Waves in Chemical System; Field, R.J.; Burger, M., Eds.; Wiley-Interscience: New York, 1985.
  6. Winfree, A. T. Science 1972, 175, 634. https://doi.org/10.1126/science.175.4022.634
  7. Winfree, A. T. Chaos 1998, 8, 1. https://doi.org/10.1063/1.166306
  8. Winfree, A. T. Chaos 1998, 8, 57. https://doi.org/10.1063/1.166287
  9. Agladze, K.; Thouvenel-Romans, S.; Steinbock, O. J. Phys.Chem. A 2001, 105, 7356. https://doi.org/10.1021/jp011294t
  10. Bertram, M.; Masere, J.; Pojman, J. A.; volke, F. J. PolymerScience A 2001, 39, 1075. https://doi.org/10.1002/1099-0518(20010401)39:7<1075::AID-POLA1084>3.0.CO;2-X
  11. Kurin-Csorgei, K.; Zhabothinsky, A. M.; Orban, M.; Epstein, I. R. J. Phys. Chem. 1996, 100, 5393. https://doi.org/10.1021/jp953356j
  12. Kurin-Csorgei, K.; Zhabothinsky, A. M.; Orban, M.; Epstein, I. R. J. Phys. Chem. 1997, 101, 6827.
  13. Kurin-Csorgei, K.; Szalai, I.; Molnar-Perl, I.; Koros, E. React.Kinet. Catal. Lett. 1994, 53, 115. https://doi.org/10.1007/BF02070120
  14. Kurin-Csorgei, K.; Szalai, I.; Koros, E. React. Kinet. Catal. Lett.1995, 54, 217. https://doi.org/10.1007/BF02071201
  15. Szalai, I.; Körös, E. J. Phys. Chem. A 1998, 102, 6892. https://doi.org/10.1021/jp9818737
  16. Vanag, V. K.; Yang, L.; Dolnik, M.; Zhabothinsky, A. M.; Epstein,I. R. Nature 2000, 406, 389. https://doi.org/10.1038/35019038
  17. Vanag, V. K.; Zhabothinsky, A. M.; Epstein, I. R. Phys. Rev. Lett.2001, 86, 552. https://doi.org/10.1103/PhysRevLett.86.552
  18. Toth, R.; Gaspar, V.; Belmoute, A.; O'Connell, M. C.; Taylor, A.;Scott, S. K. Phys. Chem. Chem. Phys. 2000, 2, 413. https://doi.org/10.1039/a909833j
  19. Kuhnert, L.; Agladze, K. I.; Krinsky, V. I. Nature 1989, 337, 224.
  20. Huh, D. S.; Choe, S. J.; Kim, M. S. React. Kinet. Catal. Lett.2001, 74, 11. https://doi.org/10.1023/A:1014130907392
  21. Huh, D. S.; Kim, M. S.; Choe, S. J. Bull. Korean Chem. Soc. 2001,22, 867.
  22. Maselko, J.; Reckley, J. S.; Showalter, K. J. Phys. Chem. 1989, 93,2774. https://doi.org/10.1021/j100344a016
  23. Maselko, J.; Showalter, K. Physica D 1991, 49, 21. https://doi.org/10.1016/0167-2789(91)90189-G
  24. Field, R. J.; Körös, E.; Noyes, R. L. J. Am. Chem. Soc. 1972, 94,8649. https://doi.org/10.1021/ja00780a001

Cited by

  1. Control of Oscillation Pattern in the Malonic acid-Bromate-Ruthenium-Hydroquinone Reaction by the Illumination of Visible Light vol.26, pp.2, 2004, https://doi.org/10.5012/bkcs.2005.26.2.219
  2. Dependence of Molecular Recognition for a Specific Cation on the Change of the Oxidation State of the Metal Catalyst Component in the Hydrogel Network vol.28, pp.5, 2004, https://doi.org/10.5012/bkcs.2007.28.5.805
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. Spatial Symmetry Breaking in the Revival Wave of the Belousov-Zhabotinsky Reaction Containing 1,4-Cyclohexanedione vol.30, pp.4, 2004, https://doi.org/10.5012/bkcs.2009.30.4.907
  5. Revival Oscillations in a Closed Bromate‐1,4‐Cyclohexanedione‐Acid System with Ferroin vol.4, pp.12, 2004, https://doi.org/10.1002/adts.202100277