DOI QR코드

DOI QR Code

Photoreactivity and Thermogravimetry of Copper(II) Complexes of N-Salicylideneaniline and Its Derivatives

  • Osman, Ahmed H. (Chemistry Department, Faculty of Science, Assiut University) ;
  • Aly, Aref A.M. (Chemistry Department, Faculty of Science, Assiut University) ;
  • El-Mottaleb, Mohamed Abd (Chemistry Department, Faculty of Science, Al-Azhar University) ;
  • Gouda, Gamal A.H. (Chemistry Department, Faculty of Science, Al-Azhar University)
  • Published : 2004.01.20

Abstract

$Cu^{II}$-complexes of N-salicylideneaniline and its derivatives were not light sensitive in most solvents such as acetonitrile. A photo-decomposition occurred upon irradiation in halocarbon solvents such as $CHCl_3$. It has been suggested that such photoreactivity is attributed to the reactivity of charge-transfer to solvent (CTTS) excited state attained upon irradiation. A mechanism has been proposed to account for the results obtained. The complexes have been thermally analysed in nitrogen and static air using thermogravimetry (TG) and derivative thermogravimetry (DTG). The thermal degradation of the complexes proceeds in two or three stages. The kinetic parameters obtained from the Coats-Redfern and Horowitz-Metzger equations show the kinetic compensation effect.

Keywords

References

  1. Raptopoulou, C. P.; Papadopoulos, A. N.; Malamatari, D. A.;Loannidis, E.; Molsidis, G.; Terzis, A.; Kessissoglou, D. P. Inorg.Chim. Acta 1998, 272, 283. https://doi.org/10.1016/S0020-1693(97)05876-3
  2. Pignatello, R.; Panicol, A.; Mazzone, P.; Pinizzotto, M.; Garozzo,A.; Furneri, P. Eur. J. Med. Chem. 1994, 29, 781. https://doi.org/10.1016/0223-5234(94)90137-6
  3. Guofa, L.; Tongshum, S.; Yonghian, Z. J. Mol. Struct. 1997, 412,75. https://doi.org/10.1016/S0022-2860(97)00026-4
  4. Radecka-Parvzek, W.; Kaczmarek, M. T.; Patroniak, V.; Pospieszna-Markiewiez, I. 35th International Conference on CoordinationChemistry; Heidelberg, 2002; p 812.
  5. El-Ansary, A. L.; Soliman, A. A.; Sherif, O. E.; Ezzat, J. A. Synth. React. Inorg. Met.-Org. Chem. 2002, 32, 1301. https://doi.org/10.1081/SIM-120014307
  6. Dharmaraji, N.; Viswanathamurthi, P.; Natarajan, K. Transition Met. Chem. 2001, 26, 105. https://doi.org/10.1023/A:1007132408648
  7. Soliman, A. A. Spectrochim. Acta 1997, 53, 509. https://doi.org/10.1016/S1386-1425(96)01823-9
  8. Aoyama, Y.; Walanav, T.; Toi, H.; Ogashi, H. J. Am. Chem. Soc. 1986, 108, 943. https://doi.org/10.1021/ja00265a017
  9. Hobday, M. D.; Smith, T. D. Coord. Chem. Rev. 1972, 9, 311. https://doi.org/10.1016/S0010-8545(00)82081-0
  10. Yamada, S. Coord. Chem. Rev. 1966, 1, 415. https://doi.org/10.1016/S0010-8545(00)80184-8
  11. Byung-Tae, A. Bull. Korean Chem. Soc. 1995, 16, 200.
  12. Jobri, K. N.; Arora, B. S. Thermochim. Acta 1982, 54, 237. https://doi.org/10.1016/0040-6031(82)85084-3
  13. Indira, V.; Parameswaran, G. J. Thermal Anal. 1993, 39, 1417.
  14. Thomas, K. J.; Parameswaran, G. J. Thermal. Anal. 1995, 45,1491. https://doi.org/10.1007/BF02547442
  15. Aly, A. A. M.; El-Said, A. I.; Osman, A. H. Transition Met. Chem.1990, 15, 403. https://doi.org/10.1007/BF01177471
  16. Osman, A. H.; Zidan, A. S. A.; El-Said, A. I.; Aly, A. A. M.Transition Met. Chem. 1993, 18, 34. https://doi.org/10.1007/BF00136045
  17. Osman, A. H.; Aly, A. A. M.; Abo El-Maali, N.; Al-Hazmi, G. A.A. Synth. React. Inorg. Met.-Org. Chem. 2002, 32, 1289. https://doi.org/10.1081/SIM-120014306
  18. Shallaby, A. M.; Mostafa, M. M.; Bekheit, M. M. Indian J. Chem.1979, 17A, 516.
  19. Hatchard, C. G.; Parker, C. A. Proc. Roy. Soc. (London) 1956, A235:518.
  20. Osman, A. H.; Aly, A. A. M. Monatsh. Chem. 1992, 123, 309. https://doi.org/10.1007/BF00810941
  21. Vogler, A.; Kunkely, H. Inorg. Chem. 1982, 21, 1172. https://doi.org/10.1021/ic00133a057
  22. Geoffroy, G. L.; Wrighton, M. S. Organometallic Photochemistry;Academic Press: New York, 1979.
  23. Gianotti, C.; Gaspard, S.; Krausz, P. Photoinduced Electron Transfer, Part D; Elsevier: Amsterdam, 1988; p 200.
  24. Traverso, O.; Scandela, F. Inorg. Chim. Acta 1970, 4, 493. https://doi.org/10.1016/S0020-1693(00)93335-8
  25. Vogler, A.; Losse, W.; Kunkely, H. J. Chem. Soc. Commun. 1979,188.
  26. Brand, J. C. D.; Snedden, W. Trans. Faraday Soc. 1957, 53, 894. https://doi.org/10.1039/tf9575300894
  27. Mann, C. K.; Barnes, K. K. Electrochemical Reactions in Monaqueous Systems; Marcel Dekker: New York, 1970.
  28. Hudlicky, M. Oxidations in Organic Chemistry; Am. Chem. Soc.:Washington, 1990.
  29. Atalla, A. A.; Mahgoub, S. A.; Gaber, A. M.; Aly, M. M. Bull.Fac. Sci. Assiut Univ. 1990, 19, 67.
  30. Coats, A. W.; Redfern, I. P. Nature 1964, 20, 68.
  31. Horowitz, H. H.; Metzger, G. Anal. Chem. 1963, 35, 1464. https://doi.org/10.1021/ac60203a013
  32. El-Awad, A. M. J. Therm. Anal. Cal. 2000, 61, 197. https://doi.org/10.1023/A:1010137313622
  33. Imura, A.; Inoue, Y.; Yasumori, I. Bull. Chem. Soc. Jpn. 1983, 56,2203. https://doi.org/10.1246/bcsj.56.2203
  34. Gallagher, P. K.; Johson, D. W. J. Thermochim. Acta 1976, 14,255. https://doi.org/10.1016/0040-6031(76)85002-2
  35. Zsako, J. J. Therm. Anal. 1976, 9, 101. https://doi.org/10.1007/BF01909271
  36. Garn, P. D. J. Therm. Anal. 1975, 7, 475. https://doi.org/10.1007/BF01911956
  37. Garn, P. D. J. Therm. Anal. 1976, 10, 99. https://doi.org/10.1007/BF02179195

Cited by

  1. Decreasing the diabetic complication by vanadyl(VO)2+/vitamin B6 complex in alloxan-induced diabetic mice vol.24, pp.4, 2013, https://doi.org/10.1007/s10856-013-4852-2
  2. Photocatalysis of Chloroform Decomposition by Tetrachlorocuprate (II) on Dowex 2-X8 vol.90, pp.6, 2014, https://doi.org/10.1111/php.12336
  3. Assessing the Effects of Substitution and Substituent Position on the Reactivity of Salicylideneaniline Ligands to Coordinate Transition Metal(II) Ions: a DFT Study vol.15, pp.3, 2004, https://doi.org/10.23939/chcht15.03.343