DOI QR코드

DOI QR Code

Synthesis and Hydrogen-Bonded Supramolecular Assembly of trans-Dihydroxotin(IV) Tetrapyridylporphyrin Complexes

  • Jo, Hwa-Jin (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Jung, Su-Hee (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Hee-Joon (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • Published : 2004.12.20

Abstract

trans-Dihydroxo[5,10,15,20-tetrakis(n-pyridyl)porphyrinato]tin(IV) (n = 3 and 4) complexes have been synthesized and fully characterized. X-ray structural analysis of trans-dihydroxo[5,10,15,20-tetrakis(4-pyridyl)porphyrinato]tin(IV) reveals that the supramolecular hydrogen bondings between the hydroxotin(IV) porphyrins and lattice water molecules form a hydrogen-bonded two-dimensional network. The hydrogen bonding mode between the tin(IV) porphyrins and the water molecules closely resembles that of the hydrogenbonded outer-sphere intermediate in the acidolysis of dihydroxotin(IV) porphyrins.

Keywords

References

  1. Giribabu, L.; Rao, T. A.; Maiya, B. G. Inorg. Chem. 1999, 38,4971. https://doi.org/10.1021/ic990326c
  2. Kumar, A. A.; Giribabu, L.; Reddy, D. R.; Maiya, B. G.Inorg. Chem. 2001, 40, 6757. https://doi.org/10.1021/ic010179u
  3. Maiya, B. G.; Bampos,N.; Kumar, A. A.; Feeder, N.; Sanders, J. K. M. New J. Chem.2001, 25, 797. https://doi.org/10.1039/b010148f
  4. Fallon, G. D.; Langford, S. J.; Lee, M. A.-P.;Lygris, E. Inorg. Chem. Commun. 2002, 5, 715. https://doi.org/10.1016/S1387-7003(02)00550-6
  5. Sanders, J. K. M. In The Porphyrin Handbook; Kadish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol. 3, p 347.
  6. Fallon, G. D.; Lee, M. A.-P.; Langford, S. J.; Nichols, P. J. Org. Lett. 2002, 4, 1895. https://doi.org/10.1021/ol025935u
  7. Kim, H. J.; Park, K.-M.; Ahn, T. K.; Kim, S. K.; Kim, K. S.; Kim,D.; Kim, H.-J. Chem. Commun. 2004, 2594.
  8. Arnold, D. P.; Blok, J. Coord. Chem. Rev. 2004, 248, 299. https://doi.org/10.1016/j.ccr.2004.01.004
  9. Sanders, J. K. M.; Bampos, N.; Clyde-Watson, Z.; Darling, S. L.;Hawley, J. C.; Kim, H.-J.; Mak, C. C.; Webb, S. J. In ThePorphyrin Handbook; Kadish, K. M.; Smith, K. M.; Guilard, R.,Eds.; Academic Press: San Diego, 2000; Vol. 3, p. 1. https://doi.org/10.1016/S1383-8121(00)80004-4
  10. Hawley, J. C.; Bampos, N.; Abraham, R. J.; Sanders, J. K. M.Chem. Commun. 1998, 661.
  11. Langford, S. J.; Lee, M. A.-P.;Macfarlane, K. J.; Weigold, J. A. J. Inclusion Phenom. 2001, 41,135. https://doi.org/10.1023/A:1014494303384
  12. Kibbey, C. E.; Park, S. B.; DeAdwyler, G.; Meyerhoff, M.E. J. Electroanal. Chem. 1992, 335, 135. https://doi.org/10.1016/0022-0728(92)80238-Y
  13. Kim, H.-J.; Bampos, N.; Sanders, J. K. M. J. Am. Chem. Soc.1999, 121, 8120. https://doi.org/10.1021/ja9915652
  14. Redman, J. E.; Feeder, N.; Teat, S. J.;Sanders, J. K. M. Inorg. Chem. 2001, 40, 2486. https://doi.org/10.1021/ic001038f
  15. Webb, S. J.;Sanders, J. K. M. Inorg. Chem. 2000, 39, 5920. https://doi.org/10.1021/ic0004129
  16. Hawley, J. C.;Bampos, N.; Sanders, J. K. M. Chem. Eur. J. 2003, 9, 5211. https://doi.org/10.1002/chem.200304862
  17. Kruger, W.; Fuhrhop, J.-H. Angew. Chem. Int. Ed. Engl. 1982, 21, 131.
  18. Wang, S.; Tabata, I.; Hisada, K.; Hori, T. Dyes Pigm.2002, 55, 27. https://doi.org/10.1016/S0143-7208(02)00069-4
  19. Handman, J.; Harriman, A.; Porter, G. Nature1984, 307, 334. https://doi.org/10.1038/307334a0
  20. Dierickx, C. C. Compr. Ser. Photosci. 2001, 2, 271. https://doi.org/10.1016/S1568-461X(01)80121-6
  21. Pogue,B. W.; Ortel, B.; Chen, N.; Redmond, R. W.; Hasan, T. CancerRes. 2001, 61, 717.
  22. Renno, R. Z.; Miller, J. W. Adv. DrugDeliv. Rev. 2001, 52, 63. https://doi.org/10.1016/S0169-409X(01)00195-8
  23. Kaplan, M. J.; Somers, R. G.;Greenberg, R. H.; Ackler, J. J. Surg. Oncol. 1998, 76, 121.
  24. Longo, F. R.; Finarelli, M. G.; Kim, J. B. J. Heterocyclic Chem.1969, 6, 927. https://doi.org/10.1002/jhet.5570060625
  25. Fleischer, E. B. Inorg. Chem. 1962, 1, 493. https://doi.org/10.1021/ic50003a010
  26. Jiang, J.; Jin, X.; Li, C.; Gu, Z. J. Coord. Chem. 1995, 35, 313. https://doi.org/10.1080/00958979508024043
  27. Arnold, D. P. Polyhedron 1986, 5, 1957. https://doi.org/10.1016/S0277-5387(00)87122-3
  28. Crossley, M. J.; Thordarson, P. R.; Wu, A.-S. J. Chem. Soc.,Perkin Trans. 1 2001, 2294.
  29. Smith, G.; Arnold, D. P.; Kennard, C. H. L.; Mak, T. C. Polyhedron1991, 10, 509. https://doi.org/10.1016/S0277-5387(00)80221-1

Cited by

  1. Visible Light Photocatalysts Based on Homogeneous and Heterogenized Tin Porphyrins vol.112, pp.2, 2008, https://doi.org/10.1021/jp0747151
  2. Open and closed states of a porphyrin based molecular turnstile vol.40, pp.14, 2011, https://doi.org/10.1039/c1dt00004g
  3. Aluminium(iii) porphyrin based axial-bonding type dyads containing thiaporphyrins and expanded thiaporphyrins as axial ligands vol.36, pp.12, 2012, https://doi.org/10.1039/c2nj40631d
  4. Synthesis of calix[4]arene-bis(tin(Iv)porphyrins) and supramolecular complexes on their basis vol.57, pp.3, 2012, https://doi.org/10.1134/S0036023612030187
  5. Self-organization of zinc(II) and tin(IV) porphyrinates into supramolecular trimers vol.83, pp.7, 2013, https://doi.org/10.1134/S1070363213070207
  6. Interfacial Self-Assembly Driven Formation of Hierarchically Structured Nanocrystals with Photocatalytic Activity vol.8, pp.1, 2014, https://doi.org/10.1021/nn405492d
  7. Supramolecular Assembly of Tin(IV) Porphyrin Cations Stabilized by Ionic Hydrogen-Bonding Interactions vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10420
  8. Supramolecular self-assembly of tin(iv) porphyrin channels stabilizing single-file chains of water molecules vol.7, pp.68, 2005, https://doi.org/10.1039/b504841a
  9. Supramolecular self-assembly of dihydroxy tin(iv) porphyrin stabilized helical water chains vol.9, pp.3, 2007, https://doi.org/10.1039/b617911h
  10. A molecular gate based on a porphyrin and a silver lock pp.28, 2007, https://doi.org/10.1039/b706527b
  11. Amphiphilic Porphyrin Nanocrystals: Morphology Tuning and Hierarchical Assembly vol.20, pp.18, 2008, https://doi.org/10.1002/adma.200800003
  12. Regioselective Reactivity of an Asymmetric Tetravalent Di[dihydroxotin(IV)] Bis-Porphyrin Host Driven by Hydrogen-Bond Templation vol.14, pp.35, 2008, https://doi.org/10.1002/chem.200801775
  13. Self-assembled porphyrin nanostructures pp.47, 2009, https://doi.org/10.1039/b914432c
  14. Tin(IV) porphyrin complexes. Crystal structures of meso-tetraphenyl-porphyrinatotin(IV) diacetate, bis(dichloro-acetate), bis(trifluoroacetate) and diformate, and structural correlations for tin(IV) porphyrin complexes with O-bound anionic ligands vol.51, pp.1, 2010, https://doi.org/10.1007/s10947-010-0015-1
  15. Supramolecular Assembly of Rigid-Flexible Block Molecules into Organized Nano-Structures vol.27, pp.9, 2004, https://doi.org/10.5012/bkcs.2006.27.9.1270
  16. The first tin(IV) porphyrin complex with chiral amino acid ligands: synthesis, characterization and X-ray crystal structure of trans-bis(L-prolinato)[5,10,15,20-tetrakis-(4-pyridyl)porphyrinato]tin(IV vol.13, pp.7, 2004, https://doi.org/10.1142/s108842460900098x
  17. Tin-porphyrin sensitized TiO2 for the production of H2 under visible light vol.3, pp.11, 2004, https://doi.org/10.1039/c0ee00205d
  18. Strapped‐Porphyrin‐Based Molecular Turnstiles vol.18, pp.33, 2004, https://doi.org/10.1002/chem.201200562
  19. Synthesis and spectroscopic characterization of Ru(II) and Sn(IV)-porphyrins supramolecular complexes vol.1081, pp.None, 2004, https://doi.org/10.1016/j.molstruc.2014.10.070
  20. Tin-porphyrin-assisted formation of coordination frameworks vol.1119, pp.None, 2004, https://doi.org/10.1016/j.molstruc.2016.04.093
  21. Structural Diversity in Tetrakis(4-pyridyl)porphyrin Supramolecular Building Blocks vol.19, pp.6, 2004, https://doi.org/10.1021/acs.cgd.9b00399