DOI QR코드

DOI QR Code

Amperometric Determination of Urea Using Enzyme-Modified Carbon Paste Electrode

  • Yang, Jae-Kyeong (Laboratory of Forest Chemistry, Faculty of Forest Science, Gyeongsang National University) ;
  • Ha, Kwang-Soo (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Baek, Hyun-Sook (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Shim-Sung (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Seo, Moo-Lyong (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University)
  • Published : 2004.10.20

Abstract

An amperometric biosensor based on carbon paste electrodes (CPEs) for the determination of urea was constructed by enzyme (urease/GL-DH)-modified method. Urea was hydrolyzed to ${NH_4}^+$ by catalyzing urease onto the enzyme-modified electrode surface in sample solution. In the presence of ${\alpha}$-ketoglutarate and reduced nicotinamide adenine dinucleotide(NADH), a liberated ${NH_4}^+$ produce to L-glutamate and $NAD^+$ by Lglutamate dehydrogenase (GL-DH). After the chemical reaction was proceeded, the electrochemical reaction was occurred that an excess of the NADH was oxidized to $NAD^+$. The oxidation current of NADH was monitored at +1.10 volt vs. Ag/AgCl. An optimum conditions of biosensor were investigated: The optimum pH range for catalyzed hydrolysis reaction of urea was pH 7.0-7.4. The linear response range and detection limit were $2.0\;{\times}\;10^{-5}{\sim}2.0\;{\times}\;10^{-4}M\;and\;5.0\;{\times}\;10^{-6}M$, respectively. Another physiological species did not interfere, except L-ascorbic acid.

Keywords

References

  1. Da Ponseca-Wollheim, E. Clin. Chem. 1990, 36(8), 1483.
  2. Thavarungkul, P.; Hakauson, H.; Holst O.; Mattiasson, B. Biosensors& Bioelectronics 1991, 6, 101. https://doi.org/10.1016/0956-5663(91)87033-8
  3. Singhal, R.; Gambhir, A.; Pandey, M. K.; Annapoorni, S.; Malhotra,B. D. Biosensors & Bioelectronics 2002, 17, 697. https://doi.org/10.1016/S0956-5663(02)00020-9
  4. Sehitogullari, A.; Uslan, A. H. Talanta 2002, 57, 1039. https://doi.org/10.1016/S0039-9140(02)00149-2
  5. Vostiar, I.; Tkac, J.; Sturdik, E.; Gemeiner, P. Bioelectrochem. 2002,56, 113. https://doi.org/10.1016/S1567-5394(02)00042-7
  6. Lee, S.-M.; Lee, W.-Y. Bull. Korean Chem. Soc. 2002, 23, 1169. https://doi.org/10.5012/bkcs.2002.23.8.1169
  7. Pandey, P. C.; Singh, G. Talanta 2001, 55, 773. https://doi.org/10.1016/S0039-9140(01)00505-7
  8. Keyes, M.; Barabino, R. 3rd International Conference on EnzymeEngineering; Plenum press: New York, U.S.A., 1975; Vol. 3.
  9. Bertocchi, P.; Compagnone, D.; Palleschi G. Biosensors &Bioelectronics 1996, 11, 1. https://doi.org/10.1016/0956-5663(96)83708-0
  10. Sundaram, P. V.; Hornby, W. E. FEBS Lett. 1970, 10, 325. https://doi.org/10.1016/0014-5793(70)80464-1
  11. Adams, R. E.; Carr, P. W. Anal. Chem. 1978, 50, 944. https://doi.org/10.1021/ac50029a030
  12. Kirstein, D.; Kirstein, L.; Scheller, F. Biosensors 1985, 1, 117. https://doi.org/10.1016/0265-928X(85)85007-0
  13. Seo, M. L.; Kim, J. S.; Lee, S. S.; Bae, Z. U.; Lee, H. L.; Park T.M. J. Korean Chem. Soc. 1993, 37(10), 937.
  14. Yabuki, S.; Mizutani, F. Biosensors & Bioelectronics 1995, 10, 353. https://doi.org/10.1016/0956-5663(95)96853-Q
  15. Wang, J.; Mo, J.-W.; Li, S.; Porter, J. Anal. Chim. Acta 2001, 441, 183. https://doi.org/10.1016/S0003-2670(01)01116-3
  16. Kulys, J. Biosensors & Bioelectronics 1999, 14, 473. https://doi.org/10.1016/S0956-5663(99)00026-3
  17. Burnett, J. N.; Underwood, A. L. Biochemistry 1965, 4, 2060. https://doi.org/10.1021/bi00886a021
  18. Guilbault, G. G. Handbook of Enzymatic Methods of Analysis;Marcel Dekker, Inc.: New York, U.S.A., 1976; Vol. 4, p 329.
  19. Guilbault, G. G. Analytical Uses of Immobilized Enzymes; Marcel Dekker, Inc.: New York, U.S.A., 1984; p 35.
  20. Guilbault, G. G. Handbook of Enzymatic Methods of Analysis;Marcel Dekker, Inc.: New York, U.S.A., 1976; Vol. 4, p 223.
  21. Zuman, P. Coll. Czech. Commun. 1957, 15, 1188.
  22. Lee, H. L.; Yang, S. T. J. Korean Chem. Soc. 1992, 36, 393.
  23. Guiltbault, G. G. Analytical Uses of Immobilized Enzymes;Marcel Deckker, Inc.: New York and Basel, 1984; p 321.
  24. AOAC International, Official Methods of Analysis, 16th; Arlington:P.A. Cunniff, 1995; p 13.

Cited by

  1. Voltammetric Detection of Urea on an Ag-Modified Zeolite-Expanded Graphite-Epoxy Composite Electrode vol.8, pp.9, 2008, https://doi.org/10.3390/s8095806
  2. An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection vol.10, pp.None, 2004, https://doi.org/10.1038/s41598-020-66422-x
  3. Hybrid alkali-acid urea-nitrate fuel cell for degrading nitrogen-rich wastewater vol.286, pp.None, 2004, https://doi.org/10.1016/j.apcatb.2021.119892