DOI QR코드

DOI QR Code

Characterization of NiO-TiO2 Modified with WO3 and Catalytic Activity for Acid Catalysis

  • Pae, Young-Il (Department of Chemistry, University of Ulsan) ;
  • Bae, Mu-Hee (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Park, Won-Cheon (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Sohn, Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook National University)
  • Published : 2004.12.20

Abstract

A series of $NiO-TiO_2$/$WO_3$ catalysts was prepared by drying powdered $Ni(OH)_2-Ti(OH)_4$ with ammonium metatungstate aqueous solution, followed by calcining in air at high temperature. Characterization of prepared catalysts was performed by using FTIR, Raman, XPS, XRD, and DSC and by measuring surface area. Upon the addition of tungsten oxide to titania up to 25 wt%, the specific surface area and acidity of catalysts increased in proportion to the tungsten oxide content due to the interaction between tungsten oxide and titania. Since the -$TiO_2$/stabilizes the tungsten oxide species, for the samples equal to or less than 25 wt%, tungsten oxide was well dispersed on the surface of titania, but for the samples containing above 25 wt%, the triclinic phase of $WO_3$ was observed at calcination temperature above 400 $^{\circ}C$. The catalytic activities of 10-NiO-$TiO_2$/$WO_3$ for 2-propanol dehydration and cumene dealkylation were correlated with the acidity of catalysts measured by ammonia chemisorption method. NiO may attract reactants and enhance the local concentration of reactants near the acid sites, consequently showing the increased catalytic activities.

Keywords

References

  1. Wainwright, M. S.; Foster, N. R. Catal. Rev. 1979, 19, 211. https://doi.org/10.1080/03602457908068056
  2. Dadyburjor, D. B.; Jewur, S. S.; Ruckenstein, E. Catal. Rev. 1979,19, 293. https://doi.org/10.1080/03602457908068057
  3. Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, 1.
  4. Cheung, T. K.; d´Itri, J. L.; Lange, F. C.; Gates, B. C. Catal. Lett.1995, 31, 153. https://doi.org/10.1007/BF00808829
  5. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids andBases; Elsevier Science: Amsterdam, 1989; Chapter 4.
  6. Arata, K. Adv. Catal. 1990, 37, 165. https://doi.org/10.1016/S0360-0564(08)60365-X
  7. Ward, D. A.; Ko, E. I. J. Catal. 1994, 150, 18. https://doi.org/10.1006/jcat.1994.1319
  8. Kustov, L. M.; Kazansky, V. B.; Figueras, F.; Tichit, D. J. Catal.1994, 150, 143. https://doi.org/10.1006/jcat.1994.1330
  9. Hsu, C. Y.; Heimbuch, C. R.; Armes, C. T.; Gates, B. C. J. Chem.Soc., Chem. Commun. 1992, 1645.
  10. Hosoi, T.; Shimadzu, T.; Ito, S.; Baba, S.; Takaoka, H.; Imai, T.; Yokoyama, N. Prepr. Symp. Div. Petr. Chem.; American Chemical Society: LosAngels, CA, 1988; p 562.
  11. Ebitani, K.; Konishi, J.; Hattori, H. J. Catal. 1991, 130, 257. https://doi.org/10.1016/0021-9517(91)90108-G
  12. Coelho, M. A.; Resasco, D. E.; Sikabwe, E. C.; White, R. L.Catal. Lett. 1995, 32, 253. https://doi.org/10.1007/BF00813219
  13. Lange, F. C.; Cheung, T. K.; Gates, B. C. Catal. Lett. 1994, 41,95. https://doi.org/10.1007/BF00811719
  14. Zarkalis, S.; Hsu, C. Y.; Gates, B. C. Catal. Lett. Commun. 1994,29, 235. https://doi.org/10.1007/BF00814269
  15. Hino, M.; Arata, K. J. Chem. Soc., Chem. Commun. 1987, 1259.
  16. Larsen, G.; Lotero, E.; Parra, R. D. In Proceeding of the 11thInternational Congress on Catalysis; Elsevier: New York, 1996;pp 543-551.
  17. Basrur, A. G.; Patwardham, S. R.; Vyas, S. N. J. Catal. 1991, 127,86. https://doi.org/10.1016/0021-9517(91)90211-L
  18. Roosnaiern, A. J.; Koster, D.; Moi, J. C. J. Phys. Chem. 1980, 84,3075. https://doi.org/10.1021/j100460a021
  19. Karakonstantis, L.; Bourikas, K.; Lycourghiotis, A. J. Catal.1996, 162, 295. https://doi.org/10.1006/jcat.1996.0287
  20. Grunert, W.; Shpiro, E. S.; Feldhaus, R.; Anders, K.; Antoshin, G.V.; Minachev, K. M. J. Catal. 1987, 107, 522. https://doi.org/10.1016/0021-9517(87)90316-2
  21. Santiesteban, J. R.; Vartuli, J. C.; Han, S.; Bastian, R. D.; Chang,C. D. J. Catal. 1997, 168, 431. https://doi.org/10.1006/jcat.1997.1658
  22. Boyse, R. A.; Ko, E. I. J. J. Catal. 1997, 171, 191. https://doi.org/10.1006/jcat.1997.1761
  23. Sohn, J. R.; Park, M. Y. J. Ind. Eng. Chem. 1998, 4, 84.
  24. Sohn, J. R.; Lee, S. H.; Park, W. C.; Kim, H. W. Bull. KoreanChem. Soc. 2004, 25, 657. https://doi.org/10.5012/bkcs.2004.25.5.657
  25. Sohn, J. R.; Seo, D. H.; Lee, S. H. J. Ind. Eng. Chem. 2004, 10,309.
  26. Sohn, J. R.; Lee, S. H. Appl. Catal. A:General 2004, 266, 89. https://doi.org/10.1016/j.apcata.2004.01.034
  27. Anderson, A. Spectrosc. Lett. 1976, 9, 809. https://doi.org/10.1080/00387017608067471
  28. Vuurman, M. A.; Wach, I. E.; Hirt, A. M. J. Phys. Chem. 1991,95, 9928. https://doi.org/10.1021/j100177a059
  29. Horsley, J. A.; Wachs, I. E.; Brown, J. M.; Via, G. H.; Hardcastle,F. D. J. Phys. Chem. 1987, 91, 4014. https://doi.org/10.1021/j100299a018
  30. Engweiler, J.; Harf, J.; Baiker, A. J. Catal. 1996, 159, 259. https://doi.org/10.1006/jcat.1996.0087
  31. Chan, S. S.; Wachs, I. E.; Murrel, L. L. J. Catal. 1984, 90, 150. https://doi.org/10.1016/0021-9517(84)90096-4
  32. Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159,170. https://doi.org/10.1006/jcat.1996.0076
  33. Sohn, J. R.; Ryu, S. G. Langmuir 1993, 9, 126. https://doi.org/10.1021/la00025a029
  34. Sohn, J. R.; Bae, J. H. Korean J. Chem. Eng. 2000, 17, 86. https://doi.org/10.1007/BF02789259
  35. Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Science1981, 211, 1121. https://doi.org/10.1126/science.211.4487.1121
  36. Olah, F. G. A.; Prakash, G. K. S.; Sommer, J. Science 1979, 206,13. https://doi.org/10.1126/science.206.4414.13
  37. Sohn, J. R.; Kim, H. J. J. Catal. 1986, 101, 428. https://doi.org/10.1016/0021-9517(86)90270-8
  38. Sohn, J. R.; Kim. H. W. J. Mol. Catal. 1989, 52, 361. https://doi.org/10.1016/0304-5102(89)85045-X
  39. Basila, M. R.; Kantner, T. R. J. Phys. Chem. 1967, 71, 467. https://doi.org/10.1021/j100862a001
  40. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.;Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052. https://doi.org/10.1021/j100332a042
  41. Sohn, J. R.; Park, W. C. Appl. Catal. A: General 2003, 239, 269. https://doi.org/10.1016/S0926-860X(02)00392-7
  42. Sohn, J. R.; Jang, H. J. J. Mol. Catal. 1991, 64, 349. https://doi.org/10.1016/0304-5102(91)85143-P
  43. Decanio, S. J.; Sohn, J. R.; Paul, P. O.; Lunsford, J. H. J. Catal.1986, 101, 132. https://doi.org/10.1016/0021-9517(86)90236-8
  44. Tanabe, K. Solid Acids and Bases; Kodansha: Tokyo, 1970; p 103.
  45. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 29. https://doi.org/10.1016/0021-9517(80)90336-X
  46. Sohn, J. R.; Chun, E. W.; Pae, Y. I. Bull. Korean Chem. Soc. 2003,24, 1785. https://doi.org/10.5012/bkcs.2003.24.12.1785
  47. Solid Acids and Bases Tanabe, K.

Cited by

  1. vol.111, pp.3, 2007, https://doi.org/10.1021/jp065071k
  2. Biodiesel Synthesis Catalyzed by Transition Metal Oxides: Ferric-Manganese Doped Tungstated/Molybdena Nanoparticle Catalyst vol.64, pp.1, 2015, https://doi.org/10.5650/jos.ess14161
  3. The Role of Tungsten Oxide Species Supported on Titania Catalysts for the Synthesis of Glycerol Carbonate from Glycerol and Urea vol.146, pp.3, 2016, https://doi.org/10.1007/s10562-016-1694-9
  4. Photoinduced Superhydrophilicity in TiO2 Thin Films Modified with WO3 vol.26, pp.10, 2004, https://doi.org/10.5012/bkcs.2005.26.10.1515
  5. Preparation and Characterization of NiO/CeO2-ZrO2/WO3 Catalyst for Ethylene Dimerization: Effect of CeO2 Doping and WO3 Modifying on Catalytic Ac vol.26, pp.5, 2004, https://doi.org/10.5012/bkcs.2005.26.5.755
  6. Al2O3-Promoted Highly Active Catalyst, NiSO4/Al2O3-TiO2 for Ethylene Dimerization vol.26, pp.7, 2004, https://doi.org/10.5012/bkcs.2005.26.7.1029
  7. Effect of Dispersed MoO3 Amount on Catalytic Activity of NiO-ZrO2 Modified with MoO3 for Acid Catalysis vol.27, pp.10, 2004, https://doi.org/10.5012/bkcs.2006.27.10.1623
  8. NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis vol.27, pp.6, 2004, https://doi.org/10.5012/bkcs.2006.27.6.821
  9. Chemical Bonding Nature and Mesoporous Structure of Nickel Intercalated Montmorillonite Clay vol.27, pp.9, 2004, https://doi.org/10.5012/bkcs.2006.27.9.1323
  10. Physicochemical and catalytic properties of NiO–TiO2 modified with WO3 for ethylene dimerization vol.298, pp.None, 2006, https://doi.org/10.1016/j.apcata.2005.09.033
  11. Catalytic Activities of Al2O3-promoted NiSO4/TiO2 for Acid Catalysis vol.108, pp.1, 2004, https://doi.org/10.1007/s10562-006-0020-3