DOI QR코드

DOI QR Code

A Computational Investigation of the Stability of Cyclopropyl Carbenes

  • Published : 2004.01.20

Abstract

The conformations of dicyclopropyl, isopropyl cyclopropyl, and diisopropylcarbenes were optimized using density functional theory (B3LYP/6-31G(d)). We showed that the optimized geometries of carbenes with cyclopropyl groups are fully in accord with those expected for bisected W-shaped conformations, in which the effective hyperconjugation of a cyclopropyl group with singlet carbene can occur. The stabilization energies were evaluated at the B3LYP/6-311+G(3df, 2p)//B3LYP/6-31G(d) + ZPE level using an isodesmic equation. The relative stability of carbenes is in the order $(c-Pr)_2$C: > (i-Pr)(c-Pr)C: > $(i-Pr)_2$C:, and a cyclopropyl group stabilizes carbene more than an isopropyl group by nearly 9 kcal/mol. Energies for the decomposition of diazo compounds to carbenes increase in the order $(c-Pr)_2$ < (i-Pr)(c-Pr) < $(i-Pr)_2$ by ~9 kcal/mol each. From a singlettriplet energy gap ($E_{ST}$) calculation, the singlet level is lower than the triplet level and the $E_{ST}$ shows a trend similar to the stabilization energy calculations. For comparison, the optimized geometries and stabilization energies for the corresponding carbocations were also studied at the same level of calculation. The greater changes in geometries and the higher stabilization energies for carbocations compared to carbenes can explain the greater hyperconjugation effect.

Keywords

References

  1. Wilberg, K. B.; Hess, J. R.; Ashe III, A. J. Carbonium Ions, Vol. III; Olah, G. A.; Schleyer, P. v. R., Eds.; Wiley-Interscience: New York, N. Y., 1972; p 1295.
  2. Roberts, J. D. J. Org. Chem. 1965, 30, 23. https://doi.org/10.1021/jo01012a004
  3. Roberts, J. D. J. Org. Chem. 1964, 29, 294. https://doi.org/10.1021/jo01025a009
  4. Servis, K. L.; Roberts, J. D. J. Am. Chem. Soc. 1964, 86, 3373.
  5. Buss, V.; Gleiter, R.; Schleyer, P. v. R. J. Am. Chem. Soc. 1971, 93, 3927. https://doi.org/10.1021/ja00745a019
  6. Ree, B. R.; Martin, J. C. J. Am. Chem. Soc. 1970, 92, 1660. https://doi.org/10.1021/ja00709a040
  7. Schleyer, P. v. R.; Van Dine, G. W. J. Am. Chem. Soc. 1971, 93, 3927. https://doi.org/10.1021/ja00745a019
  8. Hart, H.; Law, P. A. J. Am. Chem. Soc. 1964, 86, 1957. https://doi.org/10.1021/ja01064a011
  9. Hart, H.; Saundri, J. M. J. Am. Chem. Soc. 1959, 81, 320. https://doi.org/10.1021/ja01511a016
  10. Olah, G. A.; Westerman, P. W.; Nishmura, J. J. Am. Chem. Soc. 1974, 96, 3548. https://doi.org/10.1021/ja00818a031
  11. Olah, G. A.; Jeuell, D. P.; Kelly, D. P.; Porter, A. D. J. Am. Chem. Soc. 1972, 94, 146. https://doi.org/10.1021/ja00756a026
  12. Martin, J. C.; Timberlake, J. W. J. Am. Chem. Soc. 1970, 92, 978. https://doi.org/10.1021/ja00707a039
  13. Martin, J. C.; Schultz, J. E.; Timberlake, J. W. Tetrahedron Lett. 1967, 32, 4626.
  14. Freeman, P. K.; Wuerch, S. E.; Clapp, G. E. J. Org. Chem. 1990, 55, 2587. https://doi.org/10.1021/jo00296a010
  15. Modarelli, D. A.; Platz, M. S. J. Am. Chem. Soc. 1993, 115, 10440. https://doi.org/10.1021/ja00075a102
  16. Shevlin, P. B.; Mckee, M. L. J. Am. Chem. Soc. 1989, 111, 519. https://doi.org/10.1021/ja00184a019
  17. Hehre, W. J. Acc. Chem. Res. 1975, 8, 369. https://doi.org/10.1021/ar50095a002
  18. Hoffmann, R.; Random, J. A.; Popple, C.; Schleyer, P. v. R.; Hehre, W. J.; Salem L. J. Am. Chem. Soc. 1972, 94, 6221. https://doi.org/10.1021/ja00772a064
  19. Childs, R. F.; Faggiani, R.; Lock, C. J. L.; Mahendran, M.; Zweep,S. D. J. Am. Chem. Soc. 1986, 108, 1692. https://doi.org/10.1021/ja00267a050
  20. Bekhazi, M.; Risbood, P. A.; Warkentin, J. J. Am. Chem. Soc. 1983, 105, 5675. https://doi.org/10.1021/ja00355a026
  21. Sohn, M.; Jones, M. J. Am. Chem. Soc. 1972, 94, 8280. https://doi.org/10.1021/ja00778a084
  22. Moss, R. A.; Vessa, M.; Guo, W.; Munjal, R. C.; Houk, K. N.; Randan, N. G. J. Am. Chem. Soc. 1979, 101, 6788. https://doi.org/10.1021/ja00516a068
  23. Kimse, W. Carbene Chemistry, 2nd ed.; Academic Press: New York, 1971; p 467.
  24. Friedman, H.; Shechter, H. J. Am. Chem. Soc. 1960, 82, 1002.
  25. Bonneau, R.; Liu, M. T.; Rayez, M. T. J. Am. Chem. Soc. 1989, 111, 5973. https://doi.org/10.1021/ja00197a086
  26. Ammann, J. R.; Subramanian, R.; Sheridan, R. S. J. Am. Chem. Soc. 1992, 114, 7592. https://doi.org/10.1021/ja00045a059
  27. Shevlin, P. B.; Mckee, M. L. J. Am. Chem. Soc. 1989, 111, 519. https://doi.org/10.1021/ja00184a019
  28. Ho, G.; Krogh-Jespersen, K.; Moss, R. A.; Shen, S.; Sheridan, R. S.; Subramanian, R. J. Am. Chem. Soc. 1989, 111, 6875. https://doi.org/10.1021/ja00199a077
  29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. W.; Johnson,B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.;Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.;Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.;Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.;Ayala, P. Y.; Chen, w.; Wong, M. W.; Andres, J. L.; Replogle, E.S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.;Pople, J. A. GAUSSIAN 94, Revision B.2; Gaussian, Inc.:Pittsburgh, PA, 1995.
  30. Becke, A. D. J. Chem. Phys. 1993, 98,5648-5652 https://doi.org/10.1063/1.464913
  31. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 785-789
  32. Freeman, P. K. J. Am. Chem. Soc. 1998, 110, 1619.
  33. Patterson, E. V.; McMahon, R. J. J. Org. Chem. 1997, 62, 4398. https://doi.org/10.1021/jo9613848
  34. Ammann, J. R.; Subramanian, R.; Sheridan, R. S. J. Am. Chem. Soc. 1992, 114, 7592. https://doi.org/10.1021/ja00045a059
  35. Liu, J.; Niwayama, S.; You, Y.; Houk, K. N. J. Org. Chem. 1998, 63, 1064. https://doi.org/10.1021/jo971408q
  36. Halton, B.; Cooney, M. J.; Boese, R.; Maulitz, A. H. J. Org. Chem. 1998, 63, 1583. https://doi.org/10.1021/jo971857q
  37. Baik, W.; Kim, S. J.; Hurh, E.; Koo, S.; Kim, B. H. Bull. Korean Chem. Soc. 2001, 22, 1127.
  38. Hoffmann, R.; Zeiss, G. D.; Van Dine, G. W. J. Am. Chem. Soc. 1968, 90, 1485. https://doi.org/10.1021/ja01008a017
  39. Bastiansen, O.; Fritsch, F. N.; Hedberg, K. Acta Crystallogr. 1964,17, 538. https://doi.org/10.1107/S0365110X64001268
  40. Sulzbach, H. M.; Bolton, E.; Lenoir, D.; Schleyer, P. v. R.; Schaefer III, H. F. J. Am. Chem. Soc. 1996, 118,9908. https://doi.org/10.1021/ja960549r
  41. Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys.1987, 87, 5968. https://doi.org/10.1063/1.453520
  42. Replogle, E. S.; Trucks, G. W.; Staley, S. W. J. Phys. Chem. 1991,95, 6908. https://doi.org/10.1021/j100171a031
  43. J. Chem. Phys. v.87 Pople, J. A.;Head-Gordon, M.;Raghavachari, K. https://doi.org/10.1063/1.453520
  44. J. Phys. Chem. v.95 Replogle, E. S.;Trucks, G. W.;Staley, S. W. https://doi.org/10.1021/j100171a031

Cited by

  1. A novel rearrangement of fluorescent human thymidylate synthase inhibitor analogues in ESI tandem mass spectrometry vol.21, pp.3, 2010, https://doi.org/10.1016/j.jasms.2009.11.004
  2. Foiled Carbenes Revisited: When &sgr;-Stabilization Surpasses &pgr;-Stabilization vol.72, pp.1, 2004, https://doi.org/10.1021/jo062074k
  3. Explicit role of dynamical and nondynamical electron correlation on singlet–triplet splitting in carbenes vol.332, pp.2, 2007, https://doi.org/10.1016/j.chemphys.2006.12.002