DOI QR코드

DOI QR Code

The Study of Doxorubicin and its Complex with DNA by SERS and UV-resonance Raman Spectroscopy

  • Lee, Chul-Jae (Department of Chemistry Education, Kyungpook National University) ;
  • Kang, Jae-Soo (Department of Chemistry Education, Kyungpook National University) ;
  • Kim, Mak-Soon (Department of Chemistry Education, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Education, Kyungpook National University) ;
  • Lee, Mu-Sang (Department of Chemistry Education, Kyungpook National University)
  • Published : 2004.08.20

Abstract

The interaction of the antitumour agent doxorubicin with calf thymus DNA is investigated in an aqueous solution at a pH level of 6-7 with molar ratios of 1/10. A UV-resonance Raman spectroscopy and surface enhanced Raman spectroscopy are used to determine the doxorubicin binding sites and the structural variations of doxorubicin-DNA complexes in an aqueous solution. Doxorubicin intercalates with adenine and guanine via a hydrogen bond formation between the N7 positions of purine bases and the hydroxyl group of doxorubicin.

Keywords

References

  1. Liu, L. F. Annu. Rev. Biochem. 1989, 58, 351. https://doi.org/10.1146/annurev.bi.58.070189.002031
  2. Son, G. S.; Yeo, J. A.; Kim, M. S.; Kim, S. K.; Holm n, A.;Akerman, B.; Nord n, B. J. Am. Chem. Soc. 1998, 120, 6451. https://doi.org/10.1021/ja9734049
  3. Beljebbar, A.; Sockalingum, G. D.; Angiboust, J. F.; Manfait, M.Spectrochim. Acta Part A 1995, 51, 2083. https://doi.org/10.1016/0584-8539(95)01515-7
  4. Pigram, W. J.; Fuller, W.; Hamilton, L. D. Nature 1972, 235, 17. https://doi.org/10.1038/235017a0
  5. Aubel-Sadron, G.; Londox-Gagliardi, D. Biochimie 1984, 66, 333. https://doi.org/10.1016/0300-9084(84)90018-X
  6. Wang, A. H. J.; Ughetto, G.; Quigley, G. J.; Rich, A. Biochem.1987, 26, 1152. https://doi.org/10.1021/bi00378a025
  7. Manfait, M.; Bernard, L.; Theophanides, T. J. Raman Spectrosc.1981, 11, 68. https://doi.org/10.1002/jrs.1250110205
  8. Fodor, S. P. A.; Rava, R. P.; Hays, T. G.; Spiro, T. G. J. Am. Chem.Soc. 1985, 107, 1520. https://doi.org/10.1021/ja00292a012
  9. Fujimoto, N.; Toyama, A.; Takeuchi, H. J. Mol. Struct. 1998, 447,61. https://doi.org/10.1016/S0022-2860(98)00301-9
  10. Ziegler, L. D.; Hudson, B.; Strommen, D. P.; Peticolas, W. L.Biopolymers 1984, 23, 2067. https://doi.org/10.1002/bip.360231017
  11. Nabiev, I.; Chourpa, I.; Manfait, M. J. Phys. Chem. 1994, 98,1344. https://doi.org/10.1021/j100055a049
  12. Min, E. S.; Nam, S. I.; Lee, M. S. Bull. Chem. Soc. Jpn. 2002, 75,677. https://doi.org/10.1246/bcsj.75.677
  13. Nam, S. I.; Min, E. S.; Jung, Y. M.; Lee, M. S. Bull. Korean Chem.Soc. 2001, 22, 989.
  14. Kim, M. S.; Kang, J. S.; Park, S. B.; Lee, M. S. Bull. Korean Chem. Soc. 2003, 24, 633. https://doi.org/10.1007/s11814-007-0016-8
  15. Kang, J. S.; Lee, C. J.; Kim, M. S.; Lee, M. S. Bull. Korean Chem.Soc. 2003, 24, 1599. https://doi.org/10.5012/bkcs.2003.24.11.1599
  16. Moody, R. L.; Vo-Dinh, T.; Fletcher, W. H. Appl. Spectrosc. 1987,41, 966. https://doi.org/10.1366/0003702874447761
  17. Hou, X.; Wu, L.; Xu, W.; Qin, L.; Wang, C.; Zhang, X.; Shen, J. J.Colloids and surfaces A: Physicochem. Eng. Aspects 2002, 198,135. https://doi.org/10.1016/S0927-7757(01)00925-6
  18. Jung, Y. M.; Lim, J. W.; Kim, E. R.; Lee, H.; Lee, M. S. Bull.Korean Chem. Soc. 2001, 22, 318.
  19. Kang, J. S.; Hwang, S. Y.; Lee, C. J.; Lee, M. S. Bull. KoreanChem. Soc. 2002, 23, 1604. https://doi.org/10.5012/bkcs.2002.23.11.1604
  20. Saito, Y.; Wang, J. J.; Smith, D. A.; Batchelder, D. N. Langmuir2002, 18, 2959. https://doi.org/10.1002/1097-0142(1967)20:3<333::AID-CNCR2820200302>3.0.CO;2-K
  21. Tan, C.; Tasaka, H.; Yu, K. P.; Murphy, M.; Karnofsky, D. A.Cancer 1967, 20, 333. https://doi.org/10.1021/la011554y
  22. Brown, J. R. Prog. Med. Chem. 1978, 15, 125. https://doi.org/10.1016/S0079-6468(08)70255-8
  23. Stanic va, J.; Fabriciová, G.; Chinsky, L.; utiak, V.; Mi kovsk ,P. J. Mol. Struct. 1999, 478, 129. https://doi.org/10.1016/S0022-2860(98)00659-0
  24. Wingrove, A. S.; Caret, R. L. Organic Chemistry; Harper & RowPublishers: London, 1981.
  25. Rajani, C.; Kincaid, J. R.; Petering, D. H. Biophys. Chem. 2001,94, 219. https://doi.org/10.1016/S0301-4622(01)00237-X
  26. Benevides, J. M.; Thomas, P. Jr. Nucl. Acid Res. 1983, 105, 993.
  27. Prescott, B.; Steinmetz, G. J.; Thomas, P. Jr. Biopolymers 1984,23, 235. https://doi.org/10.1002/bip.360230206
  28. Miskovsky, P.; Chinsky, L.; Wheeler, G. V.; Turpin, P. Y. J.Biomol. Struct. Dyn. 1995, 13, 547. https://doi.org/10.1080/07391102.1995.10508865
  29. Kocisova, E.; Chinsky, L.; Miskovsky, P. J. Biomol. Struct. Dyn.1998, 15, 1147. https://doi.org/10.1080/07391102.1998.10509008
  30. Strekal, N.; German, A.; Gachko, G.; Maskevich, A.; Maskevich,S. J. Mol. Struct. 2001, 563, 183. https://doi.org/10.1016/S0022-2860(01)00512-9
  31. Smulevich, G.; Feiss, A. J. Phys. Chem. 1986, 90, 6388. https://doi.org/10.1021/j100281a064
  32. Moskovits, M.; Suh, J. S. J. Phys. Chem. 1988, 92, 6327. https://doi.org/10.1021/j100333a030
  33. Moskovits, M. J. Phys. Chem. 1982, 77, 6327.
  34. Nonaka, Y.; Tsuboi, M.; Nakamoto, K. J. Raman Spectrosc. 1990,21, 133. https://doi.org/10.1002/jrs.1250210211

Cited by

  1. Microspheres as therapeutic delivery agents: synthesis and biological evaluation of pH responsiveness vol.1, pp.2, 2013, https://doi.org/10.1039/C2TB00013J
  2. Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy vol.5, pp.21, 2013, https://doi.org/10.1039/c3nr03264g
  3. Raman/Fluorescence Imaging Spectroscopy vol.7, pp.8, 2013, https://doi.org/10.1021/nn403351z
  4. Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin vol.140, pp.12, 2015, https://doi.org/10.1039/C5AN00256G
  5. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate vol.5, pp.1, 2015, https://doi.org/10.1038/srep14502
  6. A computational approach to the resonance Raman spectrum of doxorubicin in aqueous solution vol.135, pp.2, 2016, https://doi.org/10.1007/s00214-015-1781-9
  7. The reduction of doxorubicin at a mercury electrode and monitoring its interaction with DNA using constant current chronopotentiometry vol.74, pp.11-12, 2010, https://doi.org/10.1135/cccc2009512
  8. On the nature of charge-transfer excitations for molecules in aqueous solution: a polarizable QM/MM study vol.137, pp.6, 2018, https://doi.org/10.1007/s00214-018-2259-3
  9. FT-IR, Raman, RRS measurements and DFT calculation for doxorubicin pp.10970029, 2010, https://doi.org/10.1002/jemt.20849
  10. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  11. 자외선 공명 라만분광법을 이용한 Doxorubicin과 Adenine의 상호작용 연구 vol.52, pp.2, 2004, https://doi.org/10.5012/jkcs.2008.52.2.118
  12. Cytotoxicity, Cellular Uptake, and DNA Interactions of New Monodentate Ruthenium(II) Complexes Containing Terphenyl Arenes vol.51, pp.17, 2008, https://doi.org/10.1021/jm8003043
  13. Surface-enhanced Raman Spectroscopy of Benzimidazolic Fungicides: Benzimidazole and Thiabendazole vol.30, pp.12, 2004, https://doi.org/10.5012/bkcs.2009.30.12.2930
  14. SERS Analysis of Self-Assembled Monolayers of DNA Strands on Gold Surfaces vol.31, pp.1, 2004, https://doi.org/10.5012/bkcs.2010.31.01.213
  15. Development of Doxorubicin – Core Shell O-succinyl Chitosan Graft Pluronic®127 Copolymer Nanoparticles to Treat Human Cancer vol.1, pp.2, 2011, https://doi.org/10.7763/ijbbb.2011.v1.24
  16. Simple Screening Method for Double-strand DNA Binders Using Hairpin DNA-modified Magnetic Beads vol.32, pp.1, 2004, https://doi.org/10.5012/bkcs.2011.32.1.247
  17. Elaboration of an Ago/TiO2 platform for DNA detection by surface enhanced Raman spectroscopy vol.605, pp.23, 2011, https://doi.org/10.1016/j.susc.2011.08.007
  18. Hsp70 regulates the doxorubicin-mediated heart failure in Hsp70-transgenic mice vol.19, pp.6, 2014, https://doi.org/10.1007/s12192-014-0509-4
  19. Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA vol.34, pp.11, 2004, https://doi.org/10.1080/07391102.2015.1118708
  20. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA vol.80, pp.None, 2004, https://doi.org/10.1016/j.bios.2016.01.068
  21. Molecular Spectroscopic Markers of DNA Damage vol.25, pp.3, 2004, https://doi.org/10.3390/molecules25030561
  22. SERS-Based Biosensors for Virus Determination with Oligonucleotides as Recognition Elements vol.21, pp.9, 2004, https://doi.org/10.3390/ijms21093373
  23. Magneto-Plasmonic Nanoparticle Grid Biosensor with Enhanced Raman Scattering and Electrochemical Transduction for the Development of Nanocarriers for Targeted Delivery of Protected Anticancer Drugs vol.11, pp.5, 2004, https://doi.org/10.3390/nano11051326