DOI QR코드

DOI QR Code

Computational Study of Hydrogen Bonding in Phenol-acetonitrile-water Clusters

  • Ahn, Doo-Sik (School of Environmental Science and Applied Chemistry (BK21), Kyunghee University) ;
  • Lee, Sung-Yul (School of Environmental Science and Applied Chemistry (BK21), Kyunghee University) ;
  • Cheong, Won-Jo (Department of Chemistry, Inha University)
  • Published : 2004.08.20

Abstract

Calculations are presented for phenol ?acetonitrile - $(water)_n$ (n = 1-3) clusters. We examine the nature of interactions in the mixed clusters by calculating and comparing the structures, relative energies and harmonic frequencies of isomers with different type of hydrogen bonding. The conformers exhibit quite different patterns in the shifts of the CN and OH stretching frequencies, depending on the type of hydrogen bonding. Cyclic hydrogen bonding among the water molecule(s), acetonitrile and phenolic OH proves very important in determining the relative stability. It is also shown that acetonitrile tends to bind to the OH group of phenol in low energy conformers.

Keywords

References

  1. Ahn, D.-S.; Park, S.-W.; Jeon, I.-S.; Lee, M.-K.; Kim, N.-H.; Han,Y.-H.; Lee, S. J. Phys. Chem. B 2003, 107, 14109. https://doi.org/10.1021/jp031041v
  2. Fredericks, S. Y.; Jordan, K. D.; Zwier, T. S. J. Phys. Chem. 1996,100, 7810. https://doi.org/10.1021/jp9535710
  3. Janzen, Ch.; Spangenberg, D.; Roth, W.; Kleinermanns, K. J.Chem. Phys. 1999, 110, 9898. https://doi.org/10.1063/1.478863
  4. Janzen, Ch.; Spangenberg, D.; Roth, W.; Kleinermanns, K. J.Chem. Phys. 1999, 110, 9898. https://doi.org/10.1063/1.471918
  5. Watanabe, T.; Ebata, T.; Tanabe, S.; Mikami, N. J. Chem. Phys.1996, 105, 408. https://doi.org/10.1063/1.471917
  6. El-Shall, M. S.; Daly, G. M.; Wright, D. J. Chem. Phys. 2002,116, 10253. https://doi.org/10.1063/1.1476317
  7. Ebata, T.; Fujii, A.; Mikami, N. Int. Rev. Phys. Chem. 1998, 17,331. https://doi.org/10.1080/014423598230081
  8. Feller, D.; Feyereisen, M. W. J. Comp. Chem. 1993, 14, 1027. https://doi.org/10.1002/jcc.540140904
  9. Tarakeshwar, P.; Kim, K. S.; Kraka, E.; Cremer, D. J. Chem. Phys.2001, 115, 6001.
  10. Ahn, D.-S; Park, S.-W.; Lee, S.; Kim, B. J. Phys. Chem. A 2003,107, 131. https://doi.org/10.1021/jp021519f
  11. Jang, S.-H.; Park, S.-W.; Kang, J.-H.; Lee, S. Bull. Korean Chem.Soc. 2002, 23, 1297. https://doi.org/10.5012/bkcs.2002.23.9.1297
  12. Ahn, D.-S.; Jeon, I.-S.; Jang, S.-H.; Park, S.-W.; Lee, S.; Cheong,W.-J. Bull. Korean Chem. Soc. 2003, 24, 695. https://doi.org/10.5012/bkcs.2003.24.6.695
  13. Ishikawa, S.; Ebata, T.; Mikami, N. J. Chem. Phys. 1999, 110,9504. https://doi.org/10.1063/1.478915
  14. Park, S.-W.; Lee, S.; Ahn, D.-S. Chem. Phys. Lett. 2003, 371,74. https://doi.org/10.1016/S0009-2614(03)00221-5
  15. Lee, K. T.; Sung, J.; Lee, K. J.; Kim, S. K.; Park, Y. D. J. Chem.Phys. 2002, 116, 8251. https://doi.org/10.1063/1.1477452
  16. Ahn, D.-S.; Lee, S.; Kim, B. Chem. Phys. Lett. 2004, 390, 384. https://doi.org/10.1016/j.cplett.2004.03.152
  17. Cramer, C. J.; Truhlar, D. G. Chem. Rev. 1999, 99, 2161, andreferences therein. https://doi.org/10.1021/cr960149m
  18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.;Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.;Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe,M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J.L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.;Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh,PA, 1995.
  19. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  20. Lee, C.; Yang, W.; Parr, R. P. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  21. Gerhards, M.; Kleinermanns, K. J. Chem. Phys. 1995, 103, 7392. https://doi.org/10.1063/1.470310
  22. Oikawa, A.; Abe, H.; Mikami, N.; Ito, M. J. Phys. Chem. 1993,87, 1027.
  23. Ahn, D.-S.; Park, S.-W.; Lee, S. (unpublished).
  24. Ahn, D.-S; Lee, S. Bull. Korean Chem. Soc. 2003, 24, 545. https://doi.org/10.5012/bkcs.2003.24.5.545

Cited by

  1. Computational Study of Hydrogen Bonding in Substituted Phenol-Acetonitrile-Water Clusters vol.55, pp.3, 2013, https://doi.org/10.1002/jccs.200800078
  2. Intermediate Complexes in SN2 Reaction: [Na+, F-, H2O, CH3Cl] System vol.26, pp.12, 2004, https://doi.org/10.5012/bkcs.2005.26.12.2081
  3. Computational Study of Proline - Water Cluster vol.26, pp.6, 2004, https://doi.org/10.5012/bkcs.2005.26.6.909
  4. Density Functional Theory Study of Acetonitrile -Water Clusters: Structures and Infrared Frequency Shifts vol.28, pp.5, 2007, https://doi.org/10.5012/bkcs.2007.28.5.725
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450