DOI QR코드

DOI QR Code

Stereoselectivity of the Ortho Ester Claisen Rearrangement of Substituted Silylpropargylic Alcohols

치환된 Silylpropargylic Alcohol의 Ortho Ester Claisen 재배열반응의 입체 선택성에 관한 연구

  • Yun, Sung-Jun (Department of Chemistry, Mokwon University) ;
  • Chung, Kun-Hoe (Bio-organic division, Korea Research Institute of Chemical Technology) ;
  • Yu, Byung-Chan (Department of Chemistry, Mokwon University)
  • 윤성준 (목원대학교 화학 및 응용화학부) ;
  • 정근회 (한국화학연구소 생물화학연구부) ;
  • 유병찬 (목원대학교 화학 및 응용화학부)
  • Published : 2004.08.20

Abstract

Keywords

EXPERIMENTAL SECTION

The typical procedure of the preparation of the ynols and the ortho ester Claisen rearrangement

1-Cyclohexyl-3-trimethylsilanyl-prop-2-yn-1-ol (2f). To a solution of 1.00 g (0.01 mmol) of trimethylsilylacetylene in 30 mL of THF was added 4.3 mL (0.011 mol) of 2.5 M n-BuLi in hexanes at -78 ℃ dropwise. The solution was stirred for 1 hr and 1.3 mL (0.011 mol) of freshly distilled cyclohexanecarboxaldehyde was added in one portion. The mixture was stirred for 1 hr and then allowed to warm to room temperature. Water was added. The organic layer was separated and extracted with ether three times. The extracts were dried over MgSO4 and concentrated under reduced pressure. The residue was chromatographed on silica gel with 5% ether in hexanes. Concentration gave 1.95 g (91%) of 2f: IR (neat) 3341, 2926, 2853, 2667, 2171, 1450, 1407, 1379,1250, 1084, 1032 cm−1; 1H NMR (300MHz, CDCl3) 3.95 (1H, d, J=6.0 Hz, methine H), 2.80-1.80 (12H, m, hexyl Hs and OH), 0.12 (9H, s, Si(CH3)3) ppm;13C NMR (200MHz, CDCl3) 105.8, 90.1, 67.5, 50.0, 43.9, 28.4, 28.0, 26.4, 25.9, 0.01(3).

rel-(2S,4R)-5-Cyclohexyl-2-methyl-3-trimethylsilanyl-penta-3,4-dienoic acid ethyl ester(3f). To 500 mg (2.38 mmol) of the propargylic alcohol 2f was added 3.40 mL (16.7 mmol) of triethyl orthopropionate and 11 mg (0.14 mmol) of propionic acid. The solution was stirred for 5 hrs at 80 ℃. The ratio of the diastereomeric allenic esters was determined by GC analysis (93:7). Ethanol and the excess ortho propionate were removed under reduced pressure. The residue was chromatographed on silica gel with 1% and 2% ether in hexanes to give 470 mg (67%) of allenic ester 3f: IR (neat) 2926, 2853, 2178, 1937, 1736, 1449, 1248, 1177, 1100, 841 cm−1; 1H NMR (200MHz, CDCl3) δ 5.00 (1H, brt, vinyl H), 4.11 (2H, q, J=7.1 Hz, -OCH2CH3), 3.0 (1H, m, methine H), 1.00-2.00(14H, CH3CH- and hexyl Hs), 1.27 (3H, t, J=7.1 Hz, -OCH2CH3), 0.11 (9H, s, -Si(CH3)3)ppm; 13C NMR (80MHz, CDCl3) δ 205.4, 172.0, 128.4, 98.4, 94.7, 60.3, 40.0, 36.8, 33.4, 33.3, 26.2, 17.4, 14.1, 1.1(3); FAB+ mass m/z 294.1.

References

  1. Daub, G.W.; Edwards, J. P.; Okada, C. R.; Allen, J. W.; Maxey, C. T.; Wells, M. S.; Goldstein, A. S.; Dibly, M. J.; Wang, C. J.; Ostercamp, D. P.; Chung, S.; Cunningham, P. S.; Berliner, M. A. J. Org. Chem. 1997, 62, 1976. https://doi.org/10.1021/jo9614250
  2. Crandall, J. K.; Tindell, G. L. J. Chem. Soc, Chem. Commum. 1970, 1411.
  3. Fujisawa, T.; Maehata, E; Kohama, H; Sato, T. Chem. Lett. 1985, 1457.
  4. Henderson, M. A.; Heathcock, C. H. J. Org. Chem. 1988, 53, 4736. https://doi.org/10.1021/jo00255a014
  5. Lai. G.; Anderson, W. K. Syn. Commun. 1995, 25, 4087. https://doi.org/10.1080/00397919508011486
  6. Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466. https://doi.org/10.1021/ja011428g
  7. Parker, K. A.; Kosley, Jr. R. W. Tetrahedron. Lett. 1976, 17, 341. https://doi.org/10.1016/S0040-4039(00)93726-2
  8. Roumestant, M. L.; Cavallin, B.; Bertrand, M. Bull Soc. Chem. Fr. 1983, 309.
  9. Fujisawa, T.; Maehata, E.; Kohama, H.; Sato, T. Chem. Lett. 1985, 1457.
  10. Danheiser, R. L.; Carini, D. J.; David, Fink, D. M.; Basak, A. Tetrahedron 1983, 39, 935. https://doi.org/10.1016/S0040-4020(01)88592-6
  11. Danheiser, R. L.; Tsai, Y.-M. J. Am. Chem. Soc. 1985, 107, 7233. https://doi.org/10.1021/ja00310a109
  12. Fleming, I.; Terrett, N. K. J. Organomet. Chem. 1984, 264, 99. https://doi.org/10.1016/0022-328X(84)85136-0
  13. Hopf, H.; Naujokes, E. Tetrahedron. Lett. 1988, 29, 609. https://doi.org/10.1016/S0040-4039(00)80162-8
  14. Danheiser, R. L.; Stoner, E. J.; Koyama, H. Yamashita, D. S.; Klade, C. A. J. Am. Chem. Soc. 1989, 111, 4407. https://doi.org/10.1021/ja00194a040
  15. Danheiser, R. L.; Carni, D. J.; Fink, D. M.; Basak, A. Tetrahedron 1983, 39, 935. https://doi.org/10.1016/S0040-4020(01)88592-6
  16. Archibald, S. C.; Fleming, I. Tetrahedron Lett. 1993, 34, 2387. https://doi.org/10.1016/S0040-4039(00)77621-0
  17. Ohno, M.; Yammamoto, Y.; Shirasaki, Y.; Eguchi, S. J. Chem. Soc., Perkin Trans. 1 1993, 263.
  18. Myers, A. G.; Zang, B. J. Am. Chem. Soc. 1996, 118, 4492. https://doi.org/10.1021/ja960443w
  19. Suginome, M.; Matsumoto A.; Ito, Y. J. Org. Chem 1996, 61, 4884. https://doi.org/10.1021/jo960778w
  20. Marshall, J. A.; Maxson, K. J. Org. Chem. 2000, 65, 630. https://doi.org/10.1021/jo991543y