DOI QR코드

DOI QR Code

Reaction of Cr Atoms with O2 at Low Pressures: Observation of New Chemiluminescence Bands from CrO2*

  • Son, Hyung-Su (Department of Chemistry, Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Ku, Ja-Kang (Department of Chemistry, Center for Integrated Molecular Systems, Pohang University of Science and Technology)
  • Published : 2004.02.20

Abstract

Ground and low-lying electronic states of Cr atoms in the gas phase were generated from photolysis of $Cr(CO)_6$ vapor in He or Ar using an unfocussed weak UV laser pulse and their reactions with $O_2$ and $N_2O$ were studied. When 0.5-1.0 Torr of $Cr(CO)_6$ /$O_2$ /He or Ar mixtures were photolyzed using 295-300 nm laser pulses, broadband chemiluminescence peaked at ~420 and ~500 nm, respectively, was observed in addition to the atomic emissions from $z^7P^{\circ}$, $z^5P^{\circ}$, and $y^7P^{\circ}$ states of Cr atoms. When $N_2O$ was used instead of $O_2$, no chemiluminescence was observed. The chemiluminescence intensities as well as the LIF intensities for those three low-lying electronic states ($a^7S_3,\;a^5S_2\;and\;a^5D_J$) showed second-order dependence on the photolysis laser power. Also, the chemiluminescence intensities were first-order in $O_2$ pressure, but the presence of excess Ar showed a strong inhibition effect on them. Based on the experimental results, the chemiluminecent species in this work is attributed to $CrO_2^*$ generated from hot ground state Cr atoms with $O_2$. The apparent radiative lifetimes of the chemiluminescent species and collisional quenching rate constants by $O_2$ and Ar also were investigated.

Keywords

References

  1. Campbell, M. L.; Kölsch, E. J.; Hooper, K. L. J. Phys. Chem. A2000, 104, 11147. https://doi.org/10.1021/jp002702g
  2. Chertihin, G. V.; Bare, W. D.; Andrews, L. J. Chem. Phys. 1997,107, 2798. https://doi.org/10.1063/1.474637
  3. Martínez, A. J. Phys. Chem. A 1998, 102, 1381. https://doi.org/10.1021/jp972747q
  4. Ritter, D.; Weisshaar, J. C. J. Phys. Chem. 1989, 93, 1576. https://doi.org/10.1021/j100341a076
  5. Brown, C. E.; Mitchell, S. A.; Hackett, P. A. J. Phys. Chem. 1991,95, 1062. https://doi.org/10.1021/j100156a009
  6. Futerko, P. M.; Fontijn, A. J. Chem. Phys. 1991, 95, 8065. https://doi.org/10.1063/1.461287
  7. Campbell, M. L.; McClean, R. E.; Harter, J. S. S. Chem. phys.Lett. 1995, 235, 497. https://doi.org/10.1016/0009-2614(95)00165-Z
  8. Matsui, R.; Senba, K.; Honma, K. Chem. Phys. Lett. 1996, 250, 560. https://doi.org/10.1016/0009-2614(96)00035-8
  9. Parson, J. M.; Geiger, L. C.; Conway, T. J. J. Chem. Phys. 1981,74, 5595. https://doi.org/10.1063/1.440922
  10. Hedgecock, I. M.; Naulin, C.; Coates, M. Chem. Phys. Lett. 1996,207, 379. https://doi.org/10.1016/0009-2614(93)89017-C
  11. Akhmadov, U. S.; Zaslonko, I. S.; Smirnov, V. N. Kinet. Catal.1988, 29, 251.
  12. Helmer, M.; Plane, J. M. C. J. Chem. Soc. Faraday Trans. 1994,90, 31. https://doi.org/10.1039/ft9949000031
  13. Chalek, C. L.; Gole, J. L. Chem. Phys. 1977, 19, 59. https://doi.org/10.1016/0301-0104(77)80007-4
  14. Dubois, L. H.; Gole, J. L. J. Chem. Phys. 1977, 66, 779. https://doi.org/10.1063/1.433956
  15. Jones, R. W.; Gole, J. L. J. Chem. Phys. 1976, 65, 3800. https://doi.org/10.1063/1.433541
  16. Ritter, D.; Weisshaar, J. C. J. Phys. Chem. 1990, 94, 4907. https://doi.org/10.1021/j100375a028
  17. Parnis, J. M.; Mitchell, S. A.; Hackett, P. A. J. Phys. Chem. 1990,94, 8152. https://doi.org/10.1021/j100384a033
  18. Son, H. S.; Lee, K.; Shin, S. K.; Ku, J. K. Chem. Phys. Lett. 2000, 320, 658. https://doi.org/10.1016/S0009-2614(00)00294-3
  19. Son, H. S.; Lee, K.; Kim, S. B.; Ku, J. K. Bull. Korean Chem. Soc. 2000, 21, 583.
  20. Son, H. S.; Ku, J. K. Bull. Korean Chem. Soc. 2002, 23, 184. https://doi.org/10.5012/bkcs.2002.23.2.184
  21. Moore, C. E. Atomic Energy levels as Derived from the Analysisof Optical Spectra. Vol. II; Natl. Stand. Ref. Data Ser. (U.S., Natl.Bur. Stand.) 1971, NSRDS-NBS 35.
  22. Martin, G. A.; Fuhr, J. R.; Wiese, W. L. J. Phys. Chem. Ref. Data1988, 17, Suppl. 3.
  23. Tyndall, G. W.; Jackson, R. L. J. Chem. Phys. 1988, 89, 1364. https://doi.org/10.1063/1.455136
  24. Trushin, S. A.; Fuss, W.; Schmid, W. E.; Kompa, K. L. J. Phys.Chem. A 1998, 102, 4129. https://doi.org/10.1021/jp973133o
  25. Gutmann, M.; Janello, J. M.;Dickebohm, M. S.; Grossekathofer, M.; Lindener-Roenneke, J. J.Phys. Chem. A 1998, 102, 4138. https://doi.org/10.1021/jp9803081
  26. Jackson, R. L. Acc. Chem. Res. 1992, 25, 581. https://doi.org/10.1021/ar00024a006
  27. Devore, T. C.; Gole, J. L. Chem. Phys. 1989, 133, 95. https://doi.org/10.1016/0301-0104(89)80102-8
  28. Pilcher, G.; Ware, M. J.; Pittam, D. A. J. Less-Common Met. 1975,42, 223. https://doi.org/10.1016/0022-5088(75)90008-9
  29. Peifer, W. R.; Garvey, J. F. J. Chem. Phys. 1991, 94, 4821. https://doi.org/10.1063/1.460567
  30. Waller, I. M.; Hepburn, J. W. J. Chem. Phys. 1988, 88, 6658. https://doi.org/10.1063/1.454406
  31. Waller, I. M.; Davis, H. F.; Hepburn, J. W. J. Phys. Chem. 1987, 91, 506. https://doi.org/10.1021/j100287a003
  32. Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.;McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 1985,14, Suppl. 1. (JANAF Thermochemical Table)
  33. Parson, J. M. J. Phys. Chem. 1986, 90, 1811. https://doi.org/10.1021/j100400a015

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450