JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY
37: 249 ~ 255, 2004

PARKER-JEANS INSTABILITY IN THE GALACTIC GASEOUS DISK. L.
LINEAR STABILITY ANALYSIS AND TWO-DIMENSIONAL MHD
SIMULATIONS

S. M. Lee', Jonasoo Kim?, J. Franco®, anp S. S. Hong*

1Supercomputing Center, Korea Institute of Science & Technology Information, Eun-dong, Yuseong-ku, Daejeon,

305-308, Korea
E-mail: smlee@kisti.re.kr
2Korea Astronomy Observatory, Whaam-dong, Yuseong-ku, Daejeon, 305-348, Korea
3nstituto de Astronomfa, Universidad Nacional Auténomia de México, Apartado Postal 70-264, Cd.
Universitaria, 04510 Mexixo DF, CP 04510, Mexico
4 Astronomy Program, SEES, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, Korea
(Received September 27, 2004; Accepted November 20, 2004)

ABSTRACT

Here we present a linear stability analysis and an MHD 2D model for the Parker-Jeans instability
in the Galactic gaseous disk. The magnetic field is assumed parallel to a Galactic spiral arm, and
the gaseous disk is modelled as a multi-component, magnetized, and isothermal gas layer. The model
employs the observed vertical stratifications for the gas density and the gravitational acceleration in the
Solar neighborhood, and the self-gravity of the gas is also included. By solving Poisson’s equation for
the gas density stratification, we determine the vertical acceleration due to self-gravity as a function of
z. Subtracting it from the observed gravitational acceleration, we separate the total acceleration into
self and external gravities. The linear stability analysis provides the corresponding dispersion relations.
The time and length scales of the fastest growing mode of the Parker-Jeans instability are about 40
Myr and 3.3 kpc, respectively. In order to confirm the linear stability analysis, we have performed
two-dimensional MHD simulations. These show that the Parker-Jeans instability under the self and
external gravities evolves into a quasi-equilibrium state, creating condensations on the northern and
southern sides of the plane, in an alternate manner.
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I. INTRODUCTION

The general interstellar medium (ISM) of our Galaxy
is composed of several diffuse and molecular gas com-
ponents, and contains a large scale magnetic field that
is, on average, parallel to the Galactic gaseous disk and
provides partial support against the local gravitational
field (e.g., Boulars & Cox 1990; Martos & Cox 1998;
Martos et al. 1999). The stability of this gaseous disk
has been studied, beginning with the pioneering work of
Parker (1966), for several decades. In recent years, con-
sidering a multi-component model for the gaseous disk,
Kim et al. (2000, hereafter Paper I) and Santillan et al.
(2000, hereafter Paper II) performed two-dimensional
linear stability analyses and nonlinear simulations of
the evolution of the resulting Parker instabilities. They
found that the time and length scales are larger than
those of a thin model. Franco et al. (2002, hereafter
Paper I11) included the effects of spiral arms, and found
that the instability creates a midplane-crossing distri-
bution of massive condensations along the arm. These
results could be associated with the corrugations, or
wavy patterns, that are apparent in several gas and
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stellar tracers of the disk structure (Gum et al. 1960;
Liszt 1985; Alfaro et al. 1992).

The models considered, however, that the local grav-
ity is only due to the stars in the disk and halo (Bien-
ayme et al. 1987), and did not include the role played
by gravitational instabilities, which are capable of pro-
ducing dense clouds (Elmegreen 1992, 1993). One ob-
vious criticism to the above mentioned results, then,
is that the Parker instability by itself is unable to pro-
duce the dense stages required to form molecular clouds
(Kim & Hong 1998).

More recently, Lee (2002) and Lee & Hong (2004)
have analyzed the evolution of the Parker-Jeans insta-
bility in self-gravitating disks. The Jeans mode can
form clouds with high densities, and also tends to di-
minish the disruptive effects of the interchange mode
(Lee & Hong 1999). Using a linear stability analysis for
a multi-component disk under the effects of both (ex-
ternal and self-induced) gravities, here we show that
the preferred mode of the combined instability leads
to the formation of cloud condensations located alter-
natively up and down with respect to the midplane.
The results of the linear analysis are verified with de-
tailed two-dimensional simulations and, in forthcoming
paper, we will later discuss the formation mechanism
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of HI filamentary structures and GMCs that could be
generated by the interchange and Jeans modes, respec-
tively.

This paper is organized as follows: In §2 we con-
struct an initial equilibrium model for the gaseous disk,
and §3 describes the linear stability analysis. In §4
we verify the results of the linear analysis with two-
dimensional MHD simulations. Finally, a brief sum-
mary and discussions are given in §5. Some details of
the linearized equations are given in the Appendix.

II. MHD MODEL FOR THE GALACTIC
GASEOUS DISK

Our initial Galactic disk model is the one described
by Boulares & Cox (1990). The model considers five
interstellar gas layers, and we further assume that all of
them are isothermal and with the same temperature.
Here we also consider, in a separate form, the grav-
itational accelerations generated by the stellar com-
ponent and by the ISM itself. That is, an externally
given Galactic gravity, g..., and the self-gravity of the
gaseous disk, g..;;. The external gravity remains fixed
in time and is perpendicular to the disk. It has only
a vertical component, namely, go= [0, 0, —gexs], with
gext > 0. The self-gravitational acceleration, on the
other hand, varies in time and can have components in
all 3 coordinates. The initial self-gravity, however, has
only a vertical component, gger o= [0, 0, —gselt,o), With
gself,o = 0. For this we use the gravitational acceler-
ation at the Solar Neighborhood derived by Bienaymé
et al. (1987), and assume that it is equal to the sum
of gext and geelro. In addition, we derive gseiro as a
function of Galactic latitude, z, by solving Poisson’s
equation with the density stratification from Boulares
& Cox (1990).

The assumed ISM density is then,

no(2) = 0.6 exp [—2272]

(70pc)?
+0.3ex ——z—2
P T (135pc)2
52
. ——— 1
+0 07exp{ 2(135pc)2} (1)

10.1exp [— 4(1ch]

2|
+0.03 exp [ 900pc} )
where each gas component represents the contributions
of Hs, cold Hi, warm HI1 in clouds, warm intercloud Hi,
and warm diffuse Hi, respectively.
The gravitational acceleration from Bienaymé et al.
(1987) is fitted with the approximation given by Martos
(1993) as follow:
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Fig. 1.— Galactic gravitational acceleration. Solid line

means observed gravity, dotted line represents gravity from
stars, and dashed line is the self-gravitational acceleration
from all gaseous components. Self-gravity represents about
13 percent of the observed total gravity. The ordinate de-
notes the normalized Galactic vertical gravitational accel-
eration in units of Lc2.

325pc

—0.48 exp <_90|glpc)} cms™2 (2)

The initial equilibrium configuration is generated
by assuming that the gas is isothermal, and the ini-
tial magnetic field is aligned along a spiral arm, vary-
ing with the vertical distance, z, from midplane, i.e.,
B,=[0, Bo(z), 0]. The vertical structure of the initial
equilibrium disk is then described by:

Gobs(z) = 8x107° |:1 —0.52 exp (_ || )

2 z
Pole) = 5 [0 + | — gt

dz

3)
where P, (z) is the total pressure of the system (gaseous
and magnetic), and po(z) = 1.27 mpn.(z) is the den-
sity (the midplane value is 1,(0)~ 1.1 cm~3, includ-
ing 10% of He by number). Given the total pres-
sure (P,(0)~3x10712 dyn cm~2, Boulares & Cox 1990)
and magnetic strength (B, (0)~ 54G, Heiles 1995) at
the midplane, the resulting isothermal sound speed is
cs=8.4km s~!. With these values for the density strati-
fication, gravitational field, and sound speed, we obtain
the stratification of the B-field by solving Eq. (3). The
details are described in Paper 1.

The strength of gseir o amounts to only about 13% of
the total gravitational acceleration, gops, and we define
the external component as gext = gobs — Jself,o- LOr sim-
plicity, as indicated before, we further assume that this

dz
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external component is time independent and directed
along the z-axis. In contrast, the self-gravitational

component varies as some gas condensations are formed,

generating forces along all three coordinate axes. This
difference already indicates that the inclusion of self-
gravity will have different consequences to those dis-
cussed in Papers I, II, and III.

III. LINEAR STABILITY ANALYSIS

(a) Ideal Magnetohydrodynamical Equations

The dynamics of a magnetized plasma under the in-
fluences of self and external gravities is described by
the ideal MHD equations

Op B
o (Y v Vo) = —vP+ L (VxB) xB
ot vVl = i
_pv¢s + PYext> (5)
0B
EZVX(’UXB), (6)
VQ'L/)S = 4w Gp, (7)
d
° v —
4 e/ =0, ®

where 15 is the sell gravitational potential, and the
rest of the symbols have their usual meanings. We use
a Cartesian coordinate system (z, y, z), whose axes
are in the radial, azimuthal and vertical directions of
the disk, respectively. The azimuthal direction is here
identified with the direction of a local spiral arm.

(b) Linearization and Perturbation Equations

The linearized versions of the ideal MHD equations
under the influences of self and external gravities are
given by

T4V (o) =0, Q

Pog; ¥ —VP1+4 (V><B1)><BO+ (VxBo)xB1
—PoV¥s,1 + P1self 0 T P1Yext (10)

%Bl V x (v x Bo), (11)

Vi1 = 4nGpy. (12)

gtpl + 4P,V v+ (v- V)P, =0. (13)

The symbols with subscript 1 denote the perturbed val-
ues. The gas disk extends to infinity in the z- and
y-directions, and is bounded by the Galactic halo at
z==z;,. The position of the Galactic halo, z,, corre-
sponds to the maximum disk thickness, zpax-

For the unperturbed material we take the isother-
mal equation of state, P = pc?, while for the per-
turbed gas we use the barotropic relation P = kp”.
As stated before, all gas layers are assumed isother-
mal, with a sound speed of 8.4 km s™!, and number
density at mid-plane of 1.1 em™2. The effective scale
height of our multi-component disk is about 166 pc
(see, Paper I) but the resulting structures are much
larger and, for convenience, we fix the length scale, L,
at 1 kpc. Then, the time unit is about 120 Myr. Since
the initial magnetic and gas pressures do not vary in
the same fashion with vertical distance, we follow the
ratio, a(z) = B2(2)/87P,(2), as a function of z.

Seeking solutions of the form

q(z,y,2,t) = q1(2) expli(kzx + kyy —wt)], (14)

and adopting L and c¢; as units of length and velocity,
we recast the set of linearized equations as

Uy — Opu,, (15)

d
QZ—:} = iUy + iUy + %

Qu, = z‘{% - Zina% ly (16)

Quy = in% + 200y + ing, (17)
Quz:%gi—@n%—%n io 1]'3;1y

+2a ddg i}y X 1+ )0, — d%a Z—i, (18)

Qi}: = —iNUg, (19)

?;103; = dicuz Opu, + 1€uy, (20)

QL — —inu., (21)

Q% = —0O,u, + 7y (ifuz + inuy, + di(uz> ,  (22)

% — (@ + )0 =S, 2 (23)

Here, uy=v5/Cs, Uy=Vy/Cs, Uz =2,/ Cs, d=15, 1/c2, &=k, L,
n=kyL, (=z/L, and Q=wL/c, are all dimensionless
quanmtles and for simplicity, we define ©,=~dlnn,/d(,
©,=—dInB,/d(, and SU(C):47TGL2,umHnO( )/c2, where
¢ = 1.27 is the mean molecular weight of the multi-
component gas disk.

Eliminating all the variables in favor of u, and ¢, we
combine equations (15) through (23) into the following
two second- order ordmary differential equatlons

d2
Uz + Al —u; + Aogu, =

A2 g ac B IEZ

¢+ Bop (24)
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and

d
d§2¢ + Co¢p = D1— i
The coefficients, Ag, A1, A2, By, B1, Cy, C2, Dg, and
D, are described in the Appendix.

In order to fix the boundary conditions at { = +(j,
we follow Tomisaka & Tkeuchi (1983). The vertical
component of the perturbed velocity at the boundary
should satisfy —iQ8¢ = u,(¢n).

Applying Gauss flux theorem to the perturbed bound-
ary gives

~VE& +n*p(Cr) — —<¢

The third boundary condition is found from pressure
continuity; the sum of gas and magnetic pressures
should be kept continuous at the boundary. By inte-
grating the z-component of the MHD momentum equa-
tion from z, to z,+dz, one may obtain the boundary
condition as

YOW [ d? A 2am?
S(C)[d<2¢ ’“2¢] {(’“1) "t }W“z

—2a [@bﬂ4 + {(’y@b —

u, + Dou,. (25)

Sy (Cn)8C. (26)

0,)6% + (22 +7)0,.10°} Q%] u,

d
+W QGobs(Ce)0C + 2a(Q2 + 20:7]2)(92 + ’)’7]2)%1@

—2a€203¢ — 4a*vOynk u, = 0, (27)

where k means 1/£2 + 12, and W does Q% + (2a+7)k2Q?
+2ayn?k2.

In addition to these conditions, the mode parity
should be specified at mid-plane. If symmetric (odd-
parity) perturbations are chosen for the vertical- Veloc—,
ity, the solution should satisfy

dC¢ =0 and u,(¢ =0)=0. (28)

These odd-parity perturbations result in solutions with
reflection symmetry about the midplane. For anti-
symmetric (even-parity} perturbations, the solution
should satisfy

P
#(C=0)=0 and Zru. o 0. (29)

These even-parity solutions, in turn, result in midplane
crossing structures.

In this paper, we limit the discussion to perturba-
tions in the (y, z)-plane. With this limitation we can
only follow the undular branch of the instability, and
the models are performed in the isothermal mode, with
v = 1. The dispersion relations are obtained with the
method described in Lee (2002), and the eigenvector

20.0 T
L
L Zoax = 2 kpc
,,,,,,,,,,,,,,,,,, Zax = 3 KpPC
15.0 |- —mm—m = Zpg = 4 kpe

30

Fig. 2.— Dispersion relations for the undular mode in
a magnetized multi-component gas disk. Each curve is
marked by the value of the maximum disk thickness consid-
ered, Zmax. Lhe ordinate corresponds to the square of the
normalized growth rate, and the abscissa to the square of
the normalized y-directional wave number. The normaliza-
tion units are the isothermal sound speed, ¢s=8.4 km s~ 7,
and length scale, L=1 kpc.

components are initially fixed by the upper boundary
conditions. For a given perturbation wave number, we
take a trial value and then integrate the equations with
the fourth-order Runge-Kutta method. When the re-
sulting solution satisfies the chosen parity condition at
2z=0, the trial solution is adopted as the eigenvalue.

(c) Dispersion Relations

The resulting dispersion relations are shown in Fig-
ure 2 for five cases with upper boundaries between 2
and 6 kpc. For the lowest boundary surface, z,.x=2
kpc, the fastest growing time is about 3.9x107 yr, and
its wavelength is 3.32 kpc. For the highest boundary
surface, zyax = 6 kpe, the corresponding values change
to 3.1x107 yr and 3.39 kpc, respectively. Comparing
with the results of Paper I, the growth time decreases
by about 15%, and the corresponding length scale in-
creases about 10% (see Table I). This is due to the
inclusion of self-gravity, which helps the combined in-
stability to grow slightly faster than the pure undu-
lar instability does. For each case, we have calculated
the dispersion curves for both midplane-symmetric and
midplane-crossing perturbations. In two-dimensions,
the growth rates of both modes in the combined Parker-
Jeans instability are larger than those of the pure
Parker instability. The midplane-crossing perturba-
tions generate condensations at the upper and lower
hemispheres in an alternate fashion, and grow faster
than the midplane-symmetric perturbations. This is
in contrast with the pure gravitational instability, that
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Fig. 3.— Run of the rms velocities as a function of time.
The natural log is used along the ordinate. The solid line
has a slope equal to the growth rate for the fastest growing
undular mode. After about ¢ = 10, the gas disk enter into
the relaxation state, and eventually evolves into a dynami-
cal quasi-equilibrium state.

prefers the midplane symmetric mode. The preferred
parity of the combined the Parker-Jeans instability re-
sults in midplane-crossing features, just like the corru-
gations observed in spiral arms. Thus, the instability in
our case follows the one of the pure Parker instability
because self-gravity amounts to only 13% of the total

gravity.
IV. TWO-DIMENSIONAL SIMULATIONS

The wavelength and parity of the fastest growing
mode in our multi-component gas disk is verified with
the aid of two-dimensional MHD simulations. The
models, that use random velocity perturbations to trig-
ger the instability, are performed with the isothermal
MHD TVD code written by Kim et al. (1999) and a
Poisson solver that uses the FFT method along with the
Green function (Lee 2002). Here we show the dynam-
ical evolution for the 2 kpc half thickness case using a
grid with 2562 zones. The physmal sizes for this compu-
tational domain are 16x4 kpc?, with a linear resolution
ranging from 15 to 63 pc. The 1n1tlal state is in equilib-
rium and receives random velocity perturbations with
an amplitude of 10~ c,. Galactic differential rotation
is not included.

Figure 3 shows the rms values for the resulting az-
imuthal (dotted line) and vertical (dashed line) veloc-
ities as a function of time. The solid line has a slope
equal to the growth rate for the fastest growing mode
with zmax =2 kpc derived from the linear stability
analysis. As is clear from the figure, the growth rate of
the linear part in the simulation follows the predicted
rate for this case.

t= 0.0 L/Cs
Ve = 0.00 C,

5
&
g
in{density)

¢ 5.0L/Cs
= 0.01 €,

A
g
In(density)

o
¥ [kpe}

(d)

Fig. 4.— Time-series maps of the Parker-Jeans instability
in 2D. The sequence shows the density (rainbow logarithmic
scale), velocity field (arrows), and magnetic field (lines), at
four selected times: t=0.0, 5.0, 8.0, and 15.0 L/c,. a) Initial
stage, b) vertical oscillation stage, c) linearly growing stage,
and d) quasi-equilibrium state.

Figures 4 shows snapshots of the resulting density

structures at four selected times with =0, 5, 8 and 10.
As predicted by the linear stability analysis, the con-
densations in the magnetic valleys are distributed in a
corrugation-like fashion, and the separations are equal
to the wavelength of the fastest growing mode.
shows that the midplane-crossing mode is effectively
the dominant mode in this model.

This

Also, Figures 4c and 4d show that the velocity field

in the magnetic valleys form zero-velocity regions. This
implies that the evolution of the two-dimensional disk
tends eventually to an equilibrium state similar to that
found in the cases without self-gravity, as those dis-
cussed in Papers I and II. Again, this is because self-
gravity only amounts to 13% of the total gravitational
acceleration, and simply adds an additional force to
drive the material faster into the magnetic valleys.

In{densily)

Indensity)
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TABLE 1
MAXIMUM GROWTH RATES AND WAVELENGTHS FOR ”EXTERNAL” AND "BOTH” GRAVITIES

Zmax Qmax,ext Tmin,ext [years] )\y,max,ext [kPC] Qmax,both Tmin,both [yeaI“S] )\y,max,both [kpC|
1.5 1.81 6.4x 107 1.50 - - -

2.0 2.50 4.6x107 3.01 3.16 3.9%x107 3.32

3.0 3.01 3.9%107 3.30 3.52 3.3%x107 3.34

4.0 3.24 3.6x107 3.48 3.36 3.2x107 3.36

5.0 3.41 3.4x107 3.69 3.77 3.1x107 3.39

V. DISCUSSION AND SUMMARY

Here we have presented a model for the Parker-Jeans
instability under the influence of self and external grav-
ities in a thick gaseous disk. We have assumed a mag-
netized, isothermal, and multi-component gaseous disk
that is unstable to the Parker instability. The initial
magnetic field lines run parallel to the spiral arm. Un-
der Galactic conditions for the gravitational accelera-
tion, gas structure, and magnetic field strength, the
resulting large-scale structures prefer to be distributed
in an azimuthally corrugated pattern. For the case of
a half disk thickness of 2 kpc, the wavelength of the
fastest growing mode along the arm is about 3.3 kpc.
The most relevant outcome of this study is the role
played by the Parker-Jeans instability in forming large-
scale and dense structures along spiral arms.

The principal results of the two-dimensional models
are as follows: (1) The inclusion of self-gravity speeds
up the growth time scale by about 15%, and the cor-
responding length scale increases by about 10%. (2)
As the undular mode grows along the direction of the
arm, the Parker instability generates gas condensations
distributed in an alternate manner with respect to the
midplane. This second result is in line with the results
found in Paper I11.

Elmegreen & Elmegreen (1987) described large HI
condensations observed in external galaxies, which they
called superclouds. They suggested that these objects
form from the diffuse medium due to gravitational in-
stabilities. Our model indicates that these HI super-
clouds can be generated by the undular mode of the
Parker instability along spiral arms.
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APPENDIX

COEFFICIENTS OF PERTURBATION
EQUATIONS

In section 3, we derived two second order ordinary
differential equations in terms of u, and ¢. The coeffi-
cients for equations (11) and (12) are:

Ay = ((22 + 2a772) {(Qa + ')/)Q2 + 2047772}

da
A = 2—77 {(2a + )2 + 2ayn? } — 4a*v0un’k

—{0,0 ~ 2a(6, —

_dln W
¢

—2« [@bQ4 + {(’Y@b —

0,)k*0? — 4o 'y@mfk“}

Y2 + 20m%) — ©,99% (2 + 20m°)

O,)E% + (2a + 7)Oyn*} Q7]

—2a (dlzllCW + 2@1,) (2 4 2an?) (2 4+ vi%)

da
¢

da®p  da®n\ 5 .o
<7 i~ dc )k ¢

+{(1+a)@ }92(92+2an )

dOy,
d¢

2]€2

A()E

da 6;,
d¢

0.){0,0* — 2a(v0, —

W(Q° + 2an?)

din W
dg

+( 0,)k*Q?

—40’v0y7°k%}
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+(2a +7)0um’ 1% + 207077k
Jodo
d¢
+200, 1202 — 20{(1 —7)O,, + 2a@b}772k2]
B1 = —Q3(Q7 + 2an?)

(L+ a)@n}[@nQ4 —{(1 = 2a— )0,

By = 2’yn2k2%—?—9 — 0,7k2Q(0? + 20m?) — 400,£20Q3
dln W dox
_9 2003 _ 9 2 2 2
T £2Q i (14 )0, }k*Q(O? + 2an?)
—dlcrllckam(ﬂ? + 2a1)

Co = WQ
Co = —k>QUQ* = {S,(¢) — (2a +7)k*}Q?
+2a{vk? - 8,()}n°]
Dy = S,(O)0%(Q? + 2am?)
Do = =5,(0)[0,.9* — {(1 — 2a — 7)©,, + 200, }k*Q?
—2a{(1 — )0, + 220 }n*k?]

Here all symbols have the same meaning as in section
3.
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