DOI QR코드

DOI QR Code

THE VELOCITY FIELD OF SUPERNOVA-DRIVEN TURBULENCE IN THE INTERSTELLAR MEDIUM

  • Published : 2004.12.01

Abstract

We perform numerical experiments on supernova-driven turbulent flows in order to see whether or not supernovae playa major role in driving turbulence in the interstellar medium. In a $(200pc)^3$ computational box, we set up, as initial conditions, uniformly magnetized gas distributions with different pairs of hydrogen number densities and magnetic field strengths, which cover the observed values in the Galactic midplane. We then explode supernovae at randomly chosen positions at a Galactic explosion rate and follow up the evolution of the supernova-driven turbulent flows by integrating numerically the ideal MHD equations with cooling and heating terms. From the numerical experiments we find that the density-weighted velocity dispersions of the flows are in the range of 5-10 km $s^{-l}$, which are consistent with the observed velocity dispersions of cold and warm neutral media. Additionally, we find that strong compressible flows driven by supernova explosions quickly change into solenoidal flows.

Keywords

References

  1. Arons, J., & Max, C. E. 1975, ApJ, 196, L77 https://doi.org/10.1086/181748
  2. Balsara, D. S. 1998a, ApJS, 116, 119 https://doi.org/10.1086/313092
  3. Balsara, D. S. 1998b, ApJS, 116, 133 https://doi.org/10.1086/313093
  4. Balsara, D. S., & Kim, J. 2004, ApJ, 602, 1079 https://doi.org/10.1086/381051
  5. Balsara, D. S., & Spicer D. 1999a, J. of Comput. Phys., 148, 133 https://doi.org/10.1006/jcph.1998.6108
  6. Balsara, D. S., & Spicer D. 1999b, J. of Comput. Phys., 149, 270 https://doi.org/10.1006/jcph.1998.6153
  7. Burgers, M. M. 1974, The Nonlinear Diffusion Equation (Dordrecht: Reidel)
  8. Cappellaro, E., Evans, R., & Turatto, M. 1999, A&A, 351, 459
  9. Cox, D. P., & Smith B. W. 1974, ApJ, 189, 105 https://doi.org/10.1086/181476
  10. Elmegreen, B. G., & Scalo, J. 2004, ARA&A, submitted (astro-ph/0404451)
  11. Ferriere, K. 1998, ApJ, 503, 700 https://doi.org/10.1086/306003
  12. Franco, J, Tenorio-Tagle, G., Tenorio-Tagle, G., & Bodenheimer, P. 1991, PASP, 103, 137
  13. Franco, J, Ferrara, A., Rozyczka, M., Tenorio-Tagle, G., & Cox, D. P. 1993, ApJ, 407, 100 https://doi.org/10.1086/172495
  14. Heiles, C., & Troland, T. H. 2003, ApJS, 145, 329 https://doi.org/10.1086/367785
  15. Iroshinikov, P. 1964, Soviet Astron., 7, 566
  16. Kolmogorov, A. 1941, Dokl. Akad. Nauk SSR, 31, 538
  17. Kraichnan, R. 1965, Phys. Fluids, 8 1385 https://doi.org/10.1063/1.1761412
  18. Larson, R. B. 1981, MNRAS, 194, 809 https://doi.org/10.1093/mnras/194.4.809
  19. MacDonald, J., & Bailey, M. E. 1981, MNRAS, 197, 995 https://doi.org/10.1093/mnras/197.4.995
  20. Mac Low, M.-M., Klessen, R. S., Burkert, A., Smith, M. D., & Kessel, O. 1998, Phys. Rev. Lett, 80, 2754 https://doi.org/10.1103/PhysRevLett.80.2754
  21. Mac Low, M.-M., & Klessen, R. S. 2004, Rev. of Mod.Phys., 76, 125 https://doi.org/10.1103/RevModPhys.76.125
  22. Padoan, P, & Nordlund, A. 1999, ApJ, 526, 279 https://doi.org/10.1086/307956
  23. Raymond, J. C., Cox, D. P., & Smith, B. W. 1976, ApJ, 204, 290 https://doi.org/10.1086/154170
  24. Shapiro, P. R., & Moore, R. T. 1976, ApJ, 207, 413
  25. Stone, J. M., Ostriker, E. C., & Gammie, C. F. 1998, ApJ, L99

Cited by

  1. The Virial Balance of Clumps and Cores in Molecular Clouds vol.661, pp.1, 2007, https://doi.org/10.1086/513708
  2. Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models vol.6, pp.S270, 2010, https://doi.org/10.1017/S1743921311000822
  3. DEPENDENCE OF INTERSTELLAR TURBULENT PRESSURE ON SUPERNOVA RATE vol.704, pp.1, 2009, https://doi.org/10.1088/0004-637X/704/1/137