DOI QR코드

DOI QR Code

ON THE GALACTIC SPIRAL PATTERNS: STELLAR AND GASEOUS

  • MARTOS MARCO (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico) ;
  • YANEZ MIGUEL (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico) ;
  • HERNANDEZ XAVIER (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico) ;
  • MORENO EDMUNDO (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico) ;
  • PICHARDO BARBARA (Instituto de Astronomfa, Universidad Nacional Autonoma de Mexico)
  • 발행 : 2004.12.01

초록

The gas response to a proposed spiral stellar pattern for our Galaxy is presented here as calculated via 2D hydrodynamic calculations utilizing the ZEUS code in the disk plane. The locus is that found by Drimmel (2000) from emission profiles in the K band and at 240 ${\mu}m$. The self-consistency of the stellar spiral pattern was studied in previous work (see Martos et al. 2004). It is a sensitive function of the pattern rotation speed, $\Omega$p, among other parameters which include the mass in the spiral and its pitch angle. Here we further discuss the complex gaseous response found there for plausible values of $\Omega$p in our Galaxy, and argue that its value must be close to $20 km s^{-l}\;kpc^{-1}$ from the strong self-consistency criterion and other recent, independent studies which depend on such parameter. However, other values of $\Omega$p that have been used in the literature are explored to study the gas response to the stellar (K band) 2-armed pattern. For our best fit values, the gaseous response to the 2-armed pattern displayed in the K band is a four-armed pattern with complex features in the interarm regions. This response resembles the optical arms observed in the Milky Way and other galaxies with the smooth underlying two-armed pattern of the old stellar disk populations in our interpretation. The complex gaseous response appears to be related to resonances in stellar orbits. Among them, the 4:1 resonance is paramount for the axisymmetric Galactic model employed, and the set of parameters explored. In the regime seemingly proper to our Galaxy, the spiral forcing appears to be marginally strong in the sense that the 4:1 resonance terminates the stellar pattern, despite its relatively low amplitude. In current work underway, the response for low values of $\Omega$p tends to remove most of the rich structure found for the optimal self-consistent model and the gaseous pattern is ring-like. For higher values than the optimal, more features and a multi-arm structure appears.

키워드

참고문헌

  1. Allen, C. & Santill$\'{a}$n, A., 1991, RMxAA, 22, 255
  2. Andhevsky, S.M., Luck, R.E., Martin, P. & Lepine, J.R.D., 2004, A & A, 413, 159 https://doi.org/10.1051/0004-6361:20031528
  3. Bissantz, N., Englmaier, P. & Gerhard, O., 2003, MN RAS, 340, 949 https://doi.org/10.1046/j.1365-8711.2003.06358.x
  4. Chakrabarti, S., Laughlin, G. & Shu, F., 2003, ApJ, 596, 220 https://doi.org/10.1086/377578
  5. Contopoulos, G. & Grosb$\phi$l, P., 1986 A & A, 155, 11
  6. Contopoulos, G. & Grosb$\phi$l, R, 1988 A & A, 197, 83
  7. Dehnen, W. & Binney, J., 1998, MNRAS, 294, 429 https://doi.org/10.1046/j.1365-8711.1998.01282.x
  8. Drimmel, R., 2000, A & A, 358, L13
  9. Drimmel, R., & Spergel, D., 2001, ApJ, 556, 181 https://doi.org/10.1086/321556
  10. Englmaier, P. & Gerhard, O,, 1999, MNRAS, 304, ,512 https://doi.org/10.1046/j.1365-8711.1999.02280.x
  11. Freudenreich, H. T., 1998, ApJ, 492, 495 https://doi.org/10.1086/305065
  12. de la Fuente marcos, R,., de la Fuente marcos, C., 2004, New Astronomy, 9, 475 https://doi.org/10.1016/j.newast.2004.02.004
  13. G$\'{o}$mez, G. & Cox, D.P., 2002, ApJ, 580, 235 https://doi.org/10.1086/343129
  14. Gorgelin, Y.M. & Gorgelin, Y.P., 1976, A & A, 49, 57
  15. Grosb$\phi$l, P. & Patsis, R, 2001, in Funes J. G., Corsini E. M., eds, ASP Conf. Ser. Vol. 230, Galaxy Disk and Disk Galaxies. Astron. Soc. Pac., San Francisco, p. 305
  16. Hern$\'{a}$ndez, X., Valls-Gabaud, D. & Gilmore, G., 2000, MNRAS 316, 605 https://doi.org/10.1046/j.1365-8711.2000.03537.x
  17. Kennicutt, R., 1989, ApJ, 344, 685 https://doi.org/10.1086/167834
  18. Kranz, T., Slyz, A. & Rix, H.-W., 2001, ApJ, 562, 164 https://doi.org/10.1086/323468
  19. Lin, C.C., Yuan, C. & Shu, F., 1969, ApJ, 155, 721 https://doi.org/10.1086/149907
  20. Martos, M. & Cox, D.P., 1998, ApJ, 509, 703 https://doi.org/10.1086/306514
  21. Martos, M., Herna$\'{n}$dez, X., Y$\'{a}$$\~{n}$ez, M., Moreno, E. & Pichardo, B. 2004, MNRAS, 350, 47 (P1) https://doi.org/10.1111/j.1365-2966.2004.07636.x
  22. Miyamoto, M. & Nagai, R., 1975, Pub.Astr.Soc.Japan, 27, 533
  23. Patsis, P.A., Contopoulos, G., & Grosb$\phi$l, P., 1991, A & A, 243, 373
  24. Patsis, P.A., Grosb$\phi$l, P. & Hiotelis, N., 1997, A & A, 323, 762
  25. Pichardo, B. 2003, Ph.D. thesis, UNAM
  26. Pichardo, B., Martos, M., Moreno, E. & Espresate, J., 2003, ApJ, 582, 230 https://doi.org/10.1086/344592
  27. Pichardo, B., Martos, M. & Moreno, E., 2004, ApJ, 609, 144 https://doi.org/10.1086/421008
  28. Shaviv, N.J., 2002, Phys. Rev. Lett., 89, 051102
  29. Stone, J.M. & Norman, M.L., 1992a, ApJS, 80, 753 https://doi.org/10.1086/191680
  30. Stone, J.M. & Norman, M.L., 1992b, ApJS, 80, 791 https://doi.org/10.1086/191681
  31. Vall$\'{e}$e, J.P., 2002, ApJ, 566, 261 https://doi.org/10.1086/337988
  32. Y$\'{a}$$\~{n}$ez, M. & Martos, M., 2004, in preparation
  33. Yuan, C., 1969, ApJ, 158, 871 https://doi.org/10.1086/150248

피인용 문헌

  1. [C ii] 158 μm line detection of the warm ionized medium in the Scutum-Crux spiral arm tangency vol.541, 2012, https://doi.org/10.1051/0004-6361/201219303
  2. A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy vol.550, 2013, https://doi.org/10.1051/0004-6361/201219769
  3. Simulating Radiating and Magnetized Flows in Multiple Dimensions with ZEUS‐MP vol.165, pp.1, 2006, https://doi.org/10.1086/504594
  4. Understanding the spiral structure of the Milky Way using the local kinematic groups vol.418, pp.3, 2011, https://doi.org/10.1111/j.1365-2966.2011.19190.x
  5. Errors in Kinematic Distances and Our Image of the Milky Way Galaxy vol.132, pp.6, 2006, https://doi.org/10.1086/508412
  6. ASSESSING THE INFLUENCE OF THE SOLAR ORBIT ON TERRESTRIAL BIODIVERSITY vol.768, pp.2, 2013, https://doi.org/10.1088/0004-637X/768/2/152
  7. Dynamics of Thick, Open Spirals in PERLAS Potentials vol.871, pp.1, 2019, https://doi.org/10.3847/1538-4357/aaf6a6