DOI QR코드

DOI QR Code

Electrochemical Characteristics on Methanol Oxidation of Pt-Ru/PPy/Nafion Composite Electrode

Pt-Ru/PPy/Nafion 복합체 전극의 메탄을 산화 특성

  • Cho Seung-Koo (Department of Chemistry, Sangji University) ;
  • Park Jong-Ho (Department of Chemical Engineering, Yonsei University)
  • 조승구 (상지대학교 이공과대학 화학과) ;
  • 박종호 (연세대학교 대학원 화학공학과)
  • Published : 2004.11.01

Abstract

The Pt-Ru electrocatalyst was Prepared on Nafion membrane modified with Polypyrrole by chemical reduction of $H_2PtCI_6\;and\;RuCl_3$ solution ai precursor. From the electron dispersive microanalysis spectroscope(EDS), the Pt-Ru catalyst was located on the surface of Ppy/Nafion composite. The electrochemical oxidation of methanol on Pt-Ru catalyst deposited in Polypyrrole-impregnated Nafion was investigated by cyclic voltammetry (CV) and chronoamperometry. The onset potential of methanol oxidation was shifted to negative potential as the $RuCI_3$ concentration in deposition solution. Also, it was known that the Pt-Ru binary catalyst on Nafion could be directly deposited by using Polypyrrole and resulting Pt-Ru/PPy/Nafion was available for methanol oxidation.

본 연구에서는 Pt-Ru 촉매를 $H_2PtCI_6$$RuCl_3$ 용액을 화학적 환원에 의해 전도성 고분자인 폴리피롤을 중합시킨 Nafion 막위에 직접 침적시켰다 EDS 분석 결과 Pt 및 Ru 촉매는 Ppy/Nafion 표면에 주로 분포하는 것을 알 수 있었다. 또한 폴리피롤이 중합된 Nanon 위에 침적시킨 Pt-Ru 촉매의 메탄올에 대한 전기화학적 산화특성을 CV로 평가하였다. 메탄을 산화 개시 전위는 Ru촉매에 사용이 증가함에 따라 음전위 방향으로 전이되었다. 따라서 폴리피롤이 중합된 Nafion표면에 Pt-Ru촉매를 직접 함침할 수 있었고. 메탄올 산화 특성을 나타내는 전극을 제작할 수 있었다.

Keywords

References

  1. H. N. Dinh, X. Ren, F. H. Garzon, P. Zelenay, and S. Gottesfeld: J. of Electroanal. Chem., 491, 222 (2000) https://doi.org/10.1016/S0022-0728(00)00271-0
  2. T. Page, R. Johnson, J. Hormes, S. Noding, and B. Rambabu: J. Of Electroanal. Chem., 485, 34 (2000) https://doi.org/10.1016/S0022-0728(00)00090-5
  3. C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, and J. M.Leger: J. of Power Sources, 105, 283 (2002) https://doi.org/10.1016/S0378-7753(01)00954-5
  4. X. Ren, M. S. Wilson and S. Gottesfeld.; J. Electrochem. Soc, 143, L12 (1996) https://doi.org/10.1149/1.1836375
  5. Xiaoming Ren, Mehlon S. Wilson and Shimshon Gottesfeld: J. Electrochem. Soc., 143, 1 (1996) https://doi.org/10.1149/1.1836378
  6. A. G. MacDiarmid and A. J. Epstein; Synth. Met., 69, 85 (1995) https://doi.org/10.1016/0379-6779(94)02374-8
  7. E. S. Matveeva and M. J. Gonzalez-Tejera; J. Electrochem. Soc., 47, 1213 (2000)
  8. P. R. Somani and S. Radhakrishnan: Materials Chemistry and Physics, 77, 117 (2002)
  9. K. Bouzek, K. M. Mangold and K. Juttner: Electrochimica Acta, 46,661 (2000) https://doi.org/10.1016/S0013-4686(00)00659-9
  10. J. H. Kim, B. Y. Kim and B. S. Jung; J. Membrane Science, 5316 (2002)
  11. T. Momma, S. Kakuda, H. Yarimizu, and T. Osaka: J. Electrochem. Soc., 142, 1766 (1995) https://doi.org/10.1149/1.2044191
  12. K. Naoi, M. Lien and W. H. Smyrl: J. Electrochem. Soc., 138, 440 (1991) https://doi.org/10.1149/1.2085606