DOI QR코드

DOI QR Code

A Study on the Characteristics of Lithium-Ion Polymer Battery with Composition of Crosslink-Type Gel Polymer Electrolyte

가교형 겔폴리머전해질 조성에 따른 리튬이온폴리머전지의 특성에 관한 연구

  • Kim Hyun-Soo (Battery Research Group, Korea Electrotechnology Research Institute) ;
  • Moon Seong-In (Battery Research Group, Korea Electrotechnology Research Institute) ;
  • Kim Sang-Pil (R&D Center, Narae Nanotech Co.,)
  • 김현수 (한국전기연구원 전지연구그룹) ;
  • 문성인 (한국전기연구원 전지연구그룹) ;
  • 김상필 (㈜나래나노텍 기술연구소)
  • Published : 2004.11.01

Abstract

Lithium secondary battery with gel polymer electrolyte, which was composed of POAGA and TEGDMA, was prepared and its cell performances were evaluated. Collation time decreased with increasing the contents of the monomer in the POAGA-based gel polymer electrolyte. The polymer electrolyte was stable up to 4.5V electro-chemically and its ionic conductivity was $5.2\times10^{-3}Scm^{-1}$ at room temperature. The lithium-ion polymer battery with $3.0wt\%$ curable monomer and $1.0wt\%$ monomer showed rate-capability, low-temperature performance and cycleability.

본 연구에서는 POAGA와 TEGDMA로 구성된 반응성 단량체에서 두 단량체 및 개시제의 조성에 따른 겔폴리머전해질전지를 제조하고 전지특성을 평가하였다 POAGA계 겔폴리머전해질은 단량체의 함량이 증가함에 따라 겔화 시간은 감소하였다. POAGA계 겔폴리머전해질은 4.5V까지 전기화학적으로 안정하였으며, 상온 이온전도도는 약 $5.2\times10^{-3}Scm^{-1}$이었다. POAGA계 겔폴리머전해질을 채용한 리튬이온폴리머전지는 반응성 단량체의 함량이 $5.0wt\%$$7.0wt\%$인 경우에 비하여 $3.0wt\%$인 경우가 고율, 저온 및 사이클 특성이 우수하였다 또한 개시제 함량은 $1.0\~3.0wt\%$ 범위에서는 $1.0wt\%$인 경우가 우수한 전지특성을 나타내었다.

Keywords

References

  1. Y. Kang, K. Cheong, K. Noh, C. Lee, and D. Seung, J. Power Sources, 119-121,432 (2003) https://doi.org/10.1016/S0378-7753(03)00183-6
  2. H. Han, H. Kang, S. Kim, and H. Kim, J. Power Sources, 112, 461(2002) https://doi.org/10.1016/S0378-7753(02)00436-6
  3. Y. Du and T. Wen, Materials Chemistry and Physics, 71, 62 (2001) https://doi.org/10.1016/S0254-0584(01)00271-1
  4. D. Kim and Y. Sun, J. Power Sources, 102, 41 (2001) https://doi.org/10.1016/S0378-7753(01)00771-6
  5. 김현수, 신정한, 나성환, 엄승욱, 문성인, 김상필, 전기전자재료학회논문지, 16, 994(2003)
  6. K. Kezuka, T. Hatazawa, and K. Nakajima, J. Power Sources, 97-98,755 (2000) https://doi.org/10.1016/S0378-7753(01)00603-6
  7. H. Kim, J. Shin, C. Doh, S. Moon, and S. Kim, J. Power Sources,112, 469 (2002) https://doi.org/10.1016/S0378-7753(02)00442-1
  8. H. Kim, J. Shin, S. Moon, M. Yun, and S. Kim, Chem. Eng. Sci.,58, 1715 (2003) https://doi.org/10.1016/S0009-2509(03)00025-3
  9. F. B. Dias, L. Plomp, and J. B .J. Veldhuis, J. Power Sources, 88, 169 (2000) https://doi.org/10.1016/S0378-7753(99)00529-7
  10. 김종욱, 문성인, 진봉수, 구할본, 윤문수, 전기전자재료학회논문지, 8, 412 (1995)
  11. H. Kim, J. Shin, S. Moon, and S. Kim, Electrochim. Acta, 48-11, 1573 (2003) https://doi.org/10.1016/S0013-4686(03)00087-2
  12. H. Kim, G. Choi, S. Moon, and S. Kim, J Applied Electrochem., 33, 491 (2003) https://doi.org/10.1023/A:1024458513004
  13. H. Kim, J. Shin, S. Moon, and M. Yun, J. Power Sources, 119-121, 482 (2003) https://doi.org/10.1016/S0378-7753(03)00269-6
  14. D. Kim, J. Power Sources, 87, 78 (2000) https://doi.org/10.1016/S0378-7753(99)00363-8
  15. H. Kuo, W. Chen, and T. Wen, J. Power Sources, 110, 27 (2002) https://doi.org/10.1016/S0378-7753(02)00214-8
  16. H. Min, J. Ko, and D. Kim, J. Power Sources, 119-121, 469 (2003) https://doi.org/10.1016/S0378-7753(03)00206-4
  17. B. Choi, Y. Kim, M. Gong, and S. Ahn, Electrochim. Acta, 46, 3475(2001) https://doi.org/10.1016/S0013-4686(01)00633-8
  18. H. R. Allcock, W. R. Laredo, and R. V. Morford, Solid State Ionics,139, 27 (2001) https://doi.org/10.1016/S0167-2738(00)00807-9
  19. S. Jo, H. Sohn, D. Kang, and D. Kim, J. Power Sources, 119-121, 478 (2003) https://doi.org/10.1016/S0378-7753(03)00267-2

Cited by

  1. Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries vol.19, pp.4, 2016, https://doi.org/10.5229/JKES.2016.19.4.123