DOI QR코드

DOI QR Code

Poly(Vinyl Chloride)와 Polyurethane을 지지체로 사용한 암모늄이온 선택성 전극의 특성비교

Comparative Studies on Ammonium Ion Selective Electrodes Using Poly(Vinyl Chloride) and Polyurethane as Substrate Matrix Materials

  • 조창애 (포항공과대학교 화학과 및 기능성분자집합체연구센터) ;
  • 박수문 (포항공과대학교 화학과 및 기능성분자집합체연구센터)
  • Cho Chang-Ae (Department of Chemistry and Center for Integrared Molecular Systems Pohang University of Science and Technology) ;
  • Park Su-Moon (Department of Chemistry and Center for Integrared Molecular Systems Pohang University of Science and Technology)
  • 발행 : 2004.08.01

초록

Nonactin을 이온 운반물질(ionophore)로, poly(vinyl chloride) (PVC) 또는 polyurethane (PU)을 지지체로, 그리고 bis(2-ethylhexyl)adipate을 가소제로 사용하여 제작한 암모늄이온 선택성전극의 성능을 비교한다. PU-전극의 검출한계를 PVC전극에 비해 더 낮게 제작할 수 있는 것을 제외하고는 PVC전극이 PU전극에 비하여 그 성능이 우수하였으며 이를 설명하기 위하여 AFM 형상과 임피던스 측정 등을 하였다. PU-전극이 PVC에 비하여 이온 이동에 대한 저항이 더 큰 것으로 보아 더 단단한 막을 형성하여 더 낮은 검출 한계를 가지며 수명이 긴 전극으로 발전시킬 수 있을 것으로 보인다.

Ammonium ion selective electrodes have been prepared using nonactin as an ionophore and poly(vinyl chloride) (PVC) or polyurethane(PU) as a polymer matrix with or without a plasticizer, bis(2-ethylhexyl) adipate, and their performances have been evaluated. The reults indicate that PU-based electrodes can be designed to perform better although PVC-based electrodes generally show better performances. In efforts to explain the obervation, we also carried out atomic force microscopy as well as impedance studies, and the results suggests that islands of ion-ophores are formed in the PVC membranes through which ion transfers appear to be more facile than through the PU membranes. The PU membranes appear to have ionophores better dispersed throughout the film and are more resistive to ion mobilities in comparison to PVC films.

키워드

참고문헌

  1. E. Baker, P. Buhlmann, and E. Pretsch, Electroanalysis, 11, 915 (1999) https://doi.org/10.1002/(SICI)1521-4109(199909)11:13<915::AID-ELAN915>3.0.CO;2-J
  2. E. Baker, P. Buhlmann, and E. Pretsch, Chem. Rev., 97, 3083 (1997) https://doi.org/10.1021/cr940394a
  3. S. K. Butt, and K. Cammann, Anal. Lett., 25, 1597 (1992) https://doi.org/10.1080/00032719208018237
  4. S. Alefret, J. Alonso, J. Bartroli, and E. Martinez-Fabregas, Analyst, 114, 1443 (1989) https://doi.org/10.1039/an9891401443
  5. C. Moor and B. C. Pressmann, Biochem. Biophys. Res. Commun., 15, 562 (1964) https://doi.org/10.1016/0006-291X(64)90505-4
  6. G. S. Cha, D. Liu, M. E. Meyerhoff, H. C. Camtor, A. R. Midgley, H. D. Goldberg, and R. B. Brown, Anal. Chem., 63, 1662 (1991)
  7. U. Fiedler and Ruzicka, Anal. Chim. Acta, 67, 179 (1973) https://doi.org/10.1016/S0003-2670(01)80244-0
  8. V. V. Cosofret, M. Erdosy, J. S. Raleigh, T. A. Johnson, M. R. Neuman, and R. P. Buck, Talanta, 43, 143 (1996) https://doi.org/10.1016/0039-9140(95)01724-0
  9. S. Y. Yoon, Y. K. Hong, B. K. Oh, G. S. Cha, and H. Nam, Anal. Chem., 69, 868 (1997) https://doi.org/10.1021/ac9605455
  10. E. Lindner, V. V. Cosofret, S. Ufer, R. P. Buck, W. J. Kao, M. R. Neuman, and J. M. Angerson, J. Biomed. Mat. Res., 28, 591 (1994) https://doi.org/10.1002/jbm.820280509
  11. C. Easpadas-Torres, and M. E. Meyerhoff, Anal. Chem. 67, 3108 (1995) https://doi.org/10.1021/ac00114a003
  12. G. J. Mood, R. B. Oke, and J. D. R Thomas,. Analyst, 95, 910 (1970) https://doi.org/10.1039/an9709500910
  13. Y. Umezawa, K. Umezawa, and H. Sato, Pure Appl. Chem., 67, 3, 507 (1995) https://doi.org/10.1351/pac199567030507
  14. J. H. Sim, K. M. Lee, J. S. Lee, D. H. Cho, H. Nam, and G. S. Cha, Bull. Korean. Chem. Soc., 22, 765 (2001)
  15. E. Lindner, V. V. Cosofret, S. Ufer, R. P. Buck, W. J. Kao, M. R. Nerman, and J. M. Anderson, J. Biomed. Mater. Res., 28, 591 (1994) https://doi.org/10.1002/jbm.820280509
  16. L. P. Marin, H. Lopez-Valdivia, P. Avila-Perez, E. Otazo-Sanchez, G. Macedo-Miranda, O. Gutierrez-Lozano, J. Alonso Chamaro, J. De la Torres-Orozco, and L. Carapia-Morales, Analyst, 126, 501 (2001) https://doi.org/10.1039/b004532m
  17. Q. Ye, G. Horvai, A. Toth. I. Bertoti, A. Botreau, and T. M. Duc, Anal. Chem., 70, 4241 (1998) https://doi.org/10.1021/ac980341j
  18. S.-M. Park and J.-S. Yoo, Anal. Chem., 75, 455A (2003)
  19. H. Wang, L. Sun, and R. D. Armstrong, Electrochim. Acta, 41, 1491(1996) https://doi.org/10.1016/0013-4686(95)00400-9
  20. M. L. Iglehart, R. P. Buck, and E. Pungor, Anal. Chem., 60, 290 (1988) https://doi.org/10.1021/ac00155a003
  21. J. Chin, C. Walsdorff, B. Stranix, J. Oh, H. J. Chung, S.-M. Park, amd K. Kim Angew. Chem. Int. Ed., 38, 2756 (1999) https://doi.org/10.1002/(SICI)1521-3773(19990917)38:18<2756::AID-ANIE2756>3.0.CO;2-6
  22. J. Chin, J. Oh, S. Y. Jon, S. H. Park, C. Walsdorff, B. Stranix,; A. Ghoussoub, S. J. Lee, H. J. Chung, S.-M. Park, and K. Kim J. Am Chem. Soc., 124, 5374 (2002)

피인용 문헌

  1. Fabrication of ion selective sensor using conducting polymer actuator vol.15, pp.sup2, 2011, https://doi.org/10.1179/143307511X13031890747778