DOI QR코드

DOI QR Code

Fundamentals and Applications of Multi-functional NSOM Technology to Characterization of Nano Structured Materials

다기능 NSOM (mf-NSOM) 을 이용한 나노 구조 재료 분석에 관한 원리와 응용

  • Lee Woo-Jin (Corrosion Research Center, University of Minnesota) ;
  • Pyun Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Smyrl W. H. (Corrosion Research Center, University of Minnesota)
  • 이우진 (미네소타대학교 부식연구센터) ;
  • 변수일 (한국과학기술원 신소재공학과) ;
  • Published : 2004.05.01

Abstract

Imaging of surfaces and structures by near-field scanning optical microscopy (NSOM) has matured and is routinely used for studies ranging from biology to materials science. Of interest in this review paper is a versatility of modified or multi-functional NSOM (mf-NSOM) to enable high resolution imaging in several modes: (1) Concurrent fluorescence and Topographical Imaging (gases) (2) Microspectroscopy (gases) (3) Concurrent Scanning Electrochemical and Topographical Imaging (SECM) (liquids) (4) Concurrent Photoelectrochemical and Topographical Imaging (PEM) (liquids) The present study will summarize some of the recent advances in mf-NSOM work confirmed and supported by the results from several other imaging techniques of optical, fluorescence, electron and electrochemical microscopy. The studies are directed at providing local information on pitting precursor sites and vulnerable areas on metal and semiconductor surfaces, and at reactive sites on heterogeneous, catalytic substrates, especially on Al 2024 alloy and polycrystalline Ti. In addition, we will introduce some results related to the laser-induced nanometal (Ag) synthesis using mf-NSOM.

최근 근접장 광학주사현미경 (NSOM)을 이용한 재료의 표면 및 구조 분석은 생물학에서 재료과학에까지 광범위하게 응용되고 있다. 본 총설에서는 기존의 NSOM을 여러가지 현미경법 (광학, 형광, 전자 및 전기화학 현미경 관찰법)과 접목하여 구성한 다기능 NSOM (multi-functional NSOM, mf-NSOM)을 이용, 나노 재료의 고분해능 이미징에 대한 원리와 응용을 고찰하였다. 본 mf-NSOM 기술을 이용하여 실제로 Al합금 및 다결정 Ti 표면에서의 공식 (pitting)을 일으키는 취약 지역을 광학적으로 분석한 결과를 기술하였다. 또한, mf-NSOM과 레이저 기술을 통해 나노 Ag 입자를 형성하고 실시간 분석한 연구결과에 대해서도 소개하고자 한다.

Keywords

References

  1. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Appl. Phys. Lett., 40, 178 (1982) https://doi.org/10.1063/1.92999
  2. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett., 49, 57 (1982) https://doi.org/10.1103/PhysRevLett.49.57
  3. G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett., 56, 930 (1986) https://doi.org/10.1103/PhysRevLett.56.930
  4. R. C. Dunn, Chem. Rev., 99, 2891 (1999) https://doi.org/10.1021/cr980130e
  5. S. Kirstein, Current Opinion in Colloid Interface Sci., 4, 256 (1999) https://doi.org/10.1016/S1359-0294(99)90005-5
  6. J. D. McNeill, D. B. O'Connor and P. F. Barbara, J. Chem. Phys., 112, 781 (2000) https://doi.org/10.1063/1.480720
  7. Ch. Lienau, T. Elsaesser, 'Ultrafast Physical Processes in Semiconductors', Semimetals, Vol. 67, Academic Press, Boston, p. 39 (2001) https://doi.org/10.1016/S0080-8784(01)80168-X
  8. D. W. Pohl (Ed.), 'Near Field Optics', Daniel Courjon, NATO ASI Series E: Applied Sciences, in: Proceedings of NATO Advance Research Workshop on NFO, 26-28 October 1992, Kluwer Academic Publishers, Dordrecht, (1993)
  9. J. P. Fillard, 'Near field optics and nanoscopy', World Scientific, River Edge, NJ, (1996)
  10. M. A. Paesler and P. J. Moyer, 'Near-Field Optics Theory, Intstrumentation, and Applications', John Wiley & Sons, New York, (1996)
  11. E. Abbe, J. Roy. Micr. Soc., 2, 300 (1882) https://doi.org/10.1111/j.1365-2818.1882.tb00190.x
  12. E. H. Synge, Philos. Mag., 6, 356 (1928) https://doi.org/10.1080/14786440808564615
  13. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, Science, 251, 1468 (1991) https://doi.org/10.1126/science.251.5000.1468
  14. E. Betzig, P. L. Finn and J. S. Weiner, Appl. Phys. Lett., 60, 2484 (1992) https://doi.org/10.1063/1.106940
  15. R. Toledo-Crow, P. C. Yang, Y. Chen and M. Vaez-Iravani, Appl. Phys. Lett., 60, 2957 (1992) https://doi.org/10.1063/1.106801
  16. K. Karrai and R. D. Grober, J. Electrochem. Soc., 66, 1842 (1994)
  17. K. Karrai and R. D. Grober, Ultramicroscopy, 61, 197 (1995) https://doi.org/10.1016/0304-3991(95)00104-2
  18. C. Blanc, B. Lavelle and G. Mankowski, Corros. Sci., 39, 495 (1997) https://doi.org/10.1016/S0010-938X(97)86099-4
  19. V. Guillaumin and G. Mankowski, Corros. Sci., 41, 421 (1999) https://doi.org/10.1016/S0010-938X(98)00116-4
  20. T. J. Warner, M. P. Schmidt, F. Sommer and D. Bellot, Z. Metallkd., 86, 494 (1995)
  21. P. Schmutz and G. S. Frankel, J. Electrochem. Soc., 145, 2295 (1998) https://doi.org/10.1149/1.1838634
  22. A. J. Bard, F.-R. F. Fan, J. Kwak and O. Lev, Anal. Chem., 61, 132 (1989) https://doi.org/10.1021/ac00177a011
  23. M. A. Alodan and W. H. Smyrl, J. Electrochem. Soc., 144, L282 (1997) https://doi.org/10.1149/1.1838010
  24. M. A. Alodan and W. H. Smyrl, J. Electrochem. Soc., 145, 1571 (1998) https://doi.org/10.1149/1.1838520
  25. M. Buechler, J. Kerimo, F. Guillaume and W. H. Smyrl, J. Electrochem. Soc., 147, 3691 (2000) https://doi.org/10.1149/1.1393960
  26. T. Wilson, 'Confocal Microscopy', Academic Press, London (1990)
  27. F. Guillaume, J. Evju, T. L. Knutson and W. H. Smyrl, J. Electrochem. Soc., 159, B262 (2003)
  28. R. G. Buchheit, R. P. Grant, P. F. Hlava, B. McKenzie and G. L. Zender, J. Electmchem. Soc., 144, 2621 (1997) https://doi.org/10.1149/1.1837874
  29. T. Knutson, F. Guillaume, W.-J. Lee, M. Alhosan and W. H. Smyrl, Electrochim. Acta, 48, 3229 (2003) https://doi.org/10.1016/S0013-4686(03)00377-3
  30. D. K. Nordstrom and H. M. May, 'The Environmental Chemistry of Aluminum', G. Sposito (Ed), CRC Press, Boca Raton, Florida, (1996)
  31. G. Furrer, B. L. Phillips, K-U. Ulrich, R. Poethig and W. H. Casey, Science, 297, 2245 (2002) https://doi.org/10.1126/science.1076505
  32. E. Barcia, O. R. Mattos, N. Pebere and B. Tribollet, J. Electrochem. Soc. 140, 2825 (1993) https://doi.org/10.1149/1.2220917
  33. P. James, N. Casillas and W. H. Smyrl, J. Electrochem. Soc., 143, 3853 (1996) https://doi.org/10.1149/1.1837308
  34. L. F. Gariias-Mesias and W. H. Smyrl, J. Electrochem. Soc., 146, 2495 (1999) https://doi.org/10.1149/1.1391961
  35. C. J. Robinson, R. H. Payne and A. E. Bell, J. Appl. Phys., 64, 4646 (1988) https://doi.org/10.1063/1.341244
  36. G. Shi, L. F. Garfias-Mesias and W. H. Smyrl, J. Electropchem. Soc., 145, 2011 (1998) https://doi.org/10.1149/1.1838591
  37. F. Garfias-Mesias, M. Alodan, P. I. James and W. H. Smyrl, J. Electrochem. Soc., 14, 2005 (1998)
  38. S.-Y. Chang, L. Liu and S. A. Asher, J. Am. Chem. Soc., 116, 6739 (1994) https://doi.org/10.1021/ja00094a032
  39. M. Kondo, K. Shinozaki, L. Bergstrom and N. Mizutani, Langmuir, 11, 394 (1995) https://doi.org/10.1021/la00002a003
  40. J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday Soc., 11, 55 (1951) https://doi.org/10.1039/df9511100055
  41. A. N. Shipway, E. Katz and I. Willner, ChemPhysChem, 1, 18 (2000) https://doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
  42. E. J. Bjerneld, F. Svedberg and M. Kaell, Nano lett., 3, 593 (2003) https://doi.org/10.1021/nl034034r
  43. J. W. P. Hsu, Mat. Sci. & Eng. R, 33, 1 (2001) https://doi.org/10.1016/S0927-796X(00)00031-0