LQ-PID 제어기 동조-시간영역에서의 접근

Tuning of LQ-PID Controller-Time Domain Approach

  • 양지훈 (한양대학교 전자전기컴퓨터공학부) ;
  • 서병설 (한양대학교 전자전기컴퓨터공학부)
  • Yang Ji Hoon (Division of Electrical and Computer Engineering, Hanyang University) ;
  • Suh Byung Suhl (Division of Electrical and Computer Engineering, Hanyang University)
  • 발행 : 2004.01.01

초록

본 논문은 2차 시스템에서 시간영역의 설계 사양을 만족하는 최적 강인 LQ-PID 제어기 설계방법을 제안한다. LQ-PID제어기 동조파라미터들은 시간영역의 설계사양인 오버슈트와 정착시간의 설계파라미터들과 LQR의 가중치요소 Q와 R의 관계에 의해서 설계될 수 있었다. 그래서 안정도-강인성뿐만 아니라 시간영역에서의 성능-강인성을 이룰 수 있었다.

This paper proposes an optimal robust LQ-PID controller design method for the second order systems to satisfy the design specifications in time domain. The tuning parameters of LQ-PID controller are determinated by the relationships between the design parameters of the overshoot and the settling time which are design specifications in time domain, and the weighting factors Q and R in LQR. we can achieve the performance-robustness in time domain as well as the stability-robustness.

키워드

참고문헌

  1. J. Doyle and G. Stein, 'Robustness with Observers,' IEEE Trans. Automat. Contr., Vol. 24, No.4, pp. 607-611, 1979 https://doi.org/10.1109/TAC.1979.1102095
  2. Doyle, J.C., Glover, K., Khargovekar, P.P. and Francis, B.A., 1999, 'State-space Solutions to Standard $H_2$ and $H_{\infty}$ Control Problems,' IEEE Trans. on Automatic Control, Vol. 34, No. 8, pp. 831-847 https://doi.org/10.1109/9.29425
  3. M. Grimble., '$H{\infty}$ controllers with a PID struc- ture,' J. of Dynamic Syst, Meas. and Contr., Vol. 112, pp. 325-336, 1994
  4. C. Mattezzoni and P. Rocco, 'Robust tuning of PID Regulators Based on Step-Response Identification,' European J. of Contr., Vol. 3, pp 125-136, 1997 https://doi.org/10.1016/S0947-3580(97)70071-2
  5. B. Suh and S. Yun, 'LQ-servo Design,' Proceedings of The 4th Asia-Pacific Conference on Control & Measurement, pp. 97-100, Guilin, China, 9-12 July 2000
  6. M. Athans, 'Lecture Note on Multivariable Control System,' M.I.T. Ref. No. 860224/6234., 1986
  7. B. Suh, 'Robust Optimal Tuning of PID Regulators for A second Order System,' Proceeding of the 14th International Conference on System Science, Wroclaw Poland, 11-14 September, pp. 313-319, 2001
  8. Y. Shin and C. Chen, 'On the weighting factors of the quadratic criterion in optimal control,' Int. J. Control, Vol. 19, No.5, pp. 947-955, 1974 https://doi.org/10.1080/00207177408932688
  9. Jian-Bo He, Qing-Guo Wang and Tong-Heng Lee, 'PI/PID controller tuning via LQR approach,' Chemical Engineering Science, Vol. 55, No. 13, pp. 2429-2439, 2000 https://doi.org/10.1016/S0009-2509(99)00512-6
  10. Graham, D. and Lathrop, R.C., 'The synthesis of optimum response: criteria and standard forms,' Trans. AIEE 72, 273-288, November 1953