DOI QR코드

DOI QR Code

광물질혼화재 종류별 고강도콘크리트의 압축강도 및 촉진 염소이온침투 특성

Compressive Strength and Chloride Permeability of High Strength Concrete according to the Variety of Mineral Admixtures

  • 발행 : 2004.06.01

초록

최근 우리나라 건설업체들의 해외, 특히 동남아지역의 빈번한 진출에 따른 고속도로, 항만 및 해양콘크리트구조물 등의 건설수주물량이 크게 증가하고 있는 추세이다. 이와 같은 요구에 부응하기 위하여 4종류의 산업부산물을 콘크리트용 혼화재로 활용한 고강도콘크리트에 착안하게 되었다. 본 연구에서는 광물질혼화재 4종류를 각각 조합한 고강도콘크리트 현장의 기후조건을 고려하여 양생온도 2종류와 양생조건 3종류씩 각각 변화시킨 총 22종류의 배합에 대하여, 고강도 강도 콘크리트의 기초물성과 염소이온 침투 저항성을 평가하기 위하여 응결 및 슬럼프, 압축강도, 공극량 및 ASTM C 1202 시험을 실시하였다. 본 연구결과, 고로슬래그미분말 혼합 고강도콘크리트의 혼합률에 관계없이 압축강도는 거의 비슷하였으나, 염소이온 총 통과전하량은 혼합률 40%에서 가장 작은 값을 나타내었다. 한편 G4FS 고강도콘크리트의 초기재령 압축강도는 가장 컸으나, G4F의 압축강도는 양생 온도 및 조건에 따라 상이하였으며, 재령 7일 이후 가장 크게 발현되었다. 한편, 고강도콘크리트의 총 통과전하량은 G4FS

The purpose of this study is to evaluate the ability to resist chloride ions penetration of the concrete structure under marine environment in south-east asia especially. In this study, high strength concrete(HSC) with various combination of ordinary portland cement(OPC), blast-furnace slag(SG) and silica fume(SF) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. And to investigate the fundamental properties and the resistance of chloride penetration of various HSC, setting time, slump flow, compressive strength, void and ASTM C 1202 test were conducted. Test results show that the compressive strength of HSC is similar regardless of SG replacement ratio and total charge passed of chloride is the smallest at 40% replacement of SG. The compressive strength of G4FS HSC is, besides, outstandingly high at early age compare with other HSC, but the compressive strength of G4F HSC, which is vary according to curing temperature and condition, most high at the age after 7 days. Total passed charge of HSC get larger in the order G4FS

키워드

참고문헌

  1. 문한영, 김기형 '고성능콘크리트의 제조, 특성 및 활용에 대한 고찰,' 도로기술세미나, 한국도로공사, 1995, pp.1-68
  2. ACI Committee 233, 'Granulated Blast-furnace Slag as a Cementitious Constituent in Concrete,' Committee Report ACI 234, American Concrete Institute, Detroit, 2003, 233R-1-18
  3. 문한영, 최연왕, '고로슬래그미분말을 혼화재로 사용한 고강도콘크리트의 강도특성에 관한 연구,' 대한토목학회논문집, 16권 3호, 1996, pp.463-472
  4. ACI Committee 234, 'Standard Practice for the Use of Silica Fume in Concrete,' Committee Report ACI 234, American Concrete Institute, Detroit, 2003, 234R-1-51
  5. Kazuyuki Torii and Mitsunori Kawamura, 'Pore Structure and Chloride Ion Permeability of Mortars Containing Silica Fume,' Cement and Concrete Composites, Vol.16, 1994, pp.279-286 https://doi.org/10.1016/0958-9465(94)90040-X
  6. Curcio F. and Deangelis B. A., 'Metakaolin as a pozzolanic microfiller for high-performance mortars,' Cement and Concrete Research, Vol.28, No.6, 1998, pp.803-809 https://doi.org/10.1016/S0008-8846(98)00045-3
  7. Asbridge A. H., Chadbournb G. A. and Pagec C. L., 'Effects of metakaolin and the interfacial transition zone on the diffusion of chloride ions through cement mortars,' Cement and Concrete Research, Vol.31, No.11, 2001, pp.1567-1572 https://doi.org/10.1016/S0008-8846(01)00598-1
  8. 日本フンクリ-ト工學會, '膨脹 コンクリ-トによる 構造物の 高機能化/高耐久化 硏究委員會 報告', コンクリ-ト工學年次論文集,Vol.25, NO.1, 2003, pp.1-62
  9. 小林-輔編著, '特殊コンクリ-ト', 技報堂, 1980, pp.6-14
  10. Nagataki, S. and Gomi, H., 'Expansive Admixture(Main1y Ettringite),' Cement and Concrete Composite, No.20, 1998, pp.163-170
  11. 長瀧重義(1997), 'コンクリ-トの高性能化, コンクリ-トの高性能化のメカニズムと混和림材料の役割', 技報堂出版, pp.23-31
  12. Kjellsen, K. O., Detwiler, R.J., and Gjorv. O. E., 'Pore Structure of Plain Cement Pastes Hydrated at Different Temperatures,' Cement & Concrete Research, Vol.20, No.6, 1990, pp.927-933 https://doi.org/10.1016/0008-8846(90)90055-3
  13. Kjellsen, K. O. and Detwiler, R.J., 'Reaction Kinetics of Portland Cement Mortars Hydrated at Different Temperatures,' Cement and Concrete Research, Vol.22, No.1, 1992, pp.112-120 https://doi.org/10.1016/0008-8846(92)90141-H
  14. Kjellsen, K. O. and Detwiler, R. J., 'Later-Age Strength Prediction by a Modified Maturity Model,' ACI Material Journal, Vol.90, No.3. 1993, pp.220-227
  15. ASTM C 1202, 'Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride lon Penetration,' ASTM, Philadelphia, 1992, pp.1-5
  16. Caijun, Shi. et. al., 'Effect of Supplementary Cementing Materials on the Specific Conductivity of Pore Solution and Its Implications on the Rapid Chloride Permeability Test(AASHTO) T 277 and ASTM C 1202) Results,' ACI Materials Journal, Vol.95, No.4, 1998, pp.389-394
  17. Celik Ozyildirim, 'Laboratory Investigation of Low-Permeability Concretes Containing Slag and Silica Fume,' ACI Materials Journal, Vol.91, No.2, March-April 1994, pp.197-202