DOI QR코드

DOI QR Code

Plasticity Model Using Three Orthogonal Stress Components for Concrete in Compression

압축력을 받는 콘크리트에 대한 세 직교 응력 성분을 이용한 소성 모델

  • Kim Jae-Yo (Dept. of Architecture, Seoul National University) ;
  • Park Hong-Gun (Dept. of Architecture, Seoul National University)
  • Published : 2004.06.01

Abstract

A plasticity model was developed to predict the behavioral characteristics of concrete in multiaxial compression. To extend the applicability of the proposed model to concrete in various stress states, a new approach for failure criteria was attempted. A stress was decomposed into one volumetric and two deviatoric components orthogonal to each other. Three failure criteria wire provided independently for each stress component. To satisfy the three failure criteria, the plasticity model using multiple failure criteria was Implemented. Each failure surface was defined by equivalent volumetric or deviatoric plastic strain. To present dilatancy due to compressive damage a non-associative flow nile was proposed. The proposed model was implemented to finite element analysis, and it was verified by comparisons with various existing test results. The comparisons show that the proposed model predicted well most of the experiments by using three independent failure criteria.

다양한 압축 응력 상태에서의 콘크리트의 거동 특성을 나타내기 위한 소성 모델을 개발하였다. 응력 성분은 압축 상태에서 각각의 거동특성을 갖는 세 개의 직교 성분으로 분리하였다. 각 성분의 거동 특성을 독립적으로 나타내기 위하여 각 성분에 대한 독립적인 다중 파괴기.준을 이용하는 소성모델을 적용하였다. 각 파괴면은 실험결과에 근거하여 각 파괴기준에 대한 등가 소성 변형률에 의하여 정의하였다. 또한, 압축손상에 의한 체적팽창을 나타내기 위한 간단한 비상관 소성흐름법칙을 제안하였다. 제안된 모델은 다양한 재료 특성 및 응력 상태를 갖는 기존의 실험 결과들과 비교를 통하여 검증되었다. 이 비교는 기존의 소성모델보다 제안된 모델의 적용성이 우수함을 입증하고 있다.

Keywords

References

  1. Kupfer, H. B., Hildorf, H. K., and Rusch, H., 'Behavior of Concrete under Biaxial Stresses,' ACI Journal, ACI, Vol.66, No.8, 1969, pp.656-666
  2. Mills, L. L. and Zimmerman, R. M., 'Compressive Strength of plain Concrete under Multiaxial Loading Conditions,' ACI Journal, ACI, Vol.67, No.l0, 1970, pp.802-807
  3. Liu, T. C. Y., Nilson, A. H., and Slate, F. O., 'Stress-Strain Response and Fracture of Concrete in Unaixal and Biaxial Compression,' ACI Journal, ACI, Vol.69, No.5, 1972, pp.291~295
  4. Nelissen, L. J. M., 'Biaxial Testing of Normal Concrete,' Heron, Vol.18, No.1, 1972
  5. Tasuji, M. E., Slate, F. O., and Nilson, A. H., 'Stress-Strain Response and Fracture of Concrete in Biaxial Loading,' ACI Journal, ACI, Vol.75, No.7, 1978, pp.306-312
  6. Kotsovos, M. D. and Newman, J. B., 'Generalized Stress-Strain Relations for Concrete,' Journal Engrg. Mech Div., ASCE, Vol.104, No.EM4, 1978, pp.845-856
  7. Smith, S. S., Willam, K. J., Gerstle, K. K., and Sture, S., 'Concrete over the Top, or: Is There Life after Peak?', ACI Mat. Journal, ACI, Vol.86, No.5, 1989, pp.491-497
  8. Bellotti, R and Rossi, P., 'Cylinder Tests: Experimental Technique and Results,' Mat. and Struct., RILEM, Vol.24, 1991, pp.45-51 https://doi.org/10.1007/BF02472681
  9. Xie, J., Elwi, A E., and MacGregor, J. G., 'Mechanical Properties of Three High Strength Concretes Containing Silica Fume,' ACI Mat Journal, ACI, Vol.92, No.2, 1995, pp.135-145
  10. Imran, I. and Pantazopoulou, S. J., 'Experimental Study of Plain Concrete under Triaxial Stress,' ACI Mat. Journal, ACI, Vol.93, No.6, 1996, pp.589-601
  11. Li, Q. and Ansari, F., 'Mechanics of Damage and Constitutive Relationships for High-Strength Concrete in Triaxial Compression,' Journal Engrg. Mech, ASCE, Vol.125, No.1, 1999, pp.1-10 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(1)
  12. Sfer, D., Carol, I., Gettu, R, and Etse, G., 'Study of the Behavior of Concrete under Thriaxial Compression,' Journal Engrg. Mech., ASCE, Vol.128, No.2, 2002, pp.156~163 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(156)
  13. Chen, A. C. T. and Chen, W. F., 'ConstitutiveRelations for Concrete,' Journal Engrg. Mech Div.,ASCE, Vol.101, No.4, 1975, pp.465-481
  14. Chen, W. F., 'Plasticity in Reinforced Concrete,' McGraw-Hill Book Company, New York, 1982
  15. Menetrey, P. and Willam, K, 'Triaxial Failure Criterion for Concrete and Its Generalization,' ACI Struct. Journal, ACI, Vo1.92, No.3, 1995, pp.311-318
  16. Pramono, E., and Willam, K, 'Fracture Energy-Based Plasticity Formulation of Plain Concrete,' Journal Engrg. Mech, ASCE, Vol.115, No.6, 1989, pp.1183-1204 https://doi.org/10.1061/(ASCE)0733-9399(1989)115:6(1183)
  17. Kang, H. and Willam, K, 'Localization Characteristics of Triaxial Concrete Model,' Journal Engrg. Mech, ASCE, Vol.125, No.8, 1999, pp.941-950 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:8(941)
  18. Imran, I. and Pantazopoulou, S. J., 'Plasticity Model for Concrete under Trixial Compression,' Journal Engrg. Mech, ASCE, Vol.127, No.3, 2001, pp.281-290 https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(281)
  19. Grassl, P., Lungren, K., and Gylltoft, K, 'Concrete in Compression: a Plasticity Theory with a Novel Hardening Law,' Int. J. of Solids and Struct., Pergamon, Vol.39, 2002, pp.5205-5223 https://doi.org/10.1016/S0020-7683(02)00408-0
  20. Bazant, Z. P. and Prat, P. C., 'Microplane Model for Brittle-Plastic Material,' Journal Engrg. Mech, ASCE, Vol.114, No.10, 1988, pp.1672-1702 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1672)
  21. Park, H. and Klingner, R E., 'Nonlinear Analysis of RC Members Using Plasticity with Multiple Failure Criteria,' Journal of Struct Engrg., ASCE, Vol.123, No.5, 1997, pp.643-651 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(643)
  22. Green, S. J. and Swanson, S. R., 'Static Constitutive Relations for Concrete,' Air force Weapons Lab. Tech Rep., AFWL-TR-72-244, Kirtland Air Force Base, Albuquerque, N. Mex., 1973
  23. Wang, C.-Z., Guo, Z.-H., and Zhang, X.-Q., 'Experimental Investigation of Biaxial and Triaxial Compressive Strength,' ACI Mat. Journal, ACI,Vol.84, No.2, 1987, pp.92-100
  24. Crisfield, M. A., 'Basic Plasticity,' Non-linear Finite Element Analysis of Solids and Structures Vol. 1, John Wiley & Sons, Inc., New York, 1991, pp.152-200
  25. Hognestad, F., Hanson, N. W., and McHenry, D., 'Concrete Stress Distribution in Ultimate Strength Design,' ACI Journal, ACI, Vol.52, 1955, pp.455-477
  26. Desayi, P. and Krishnan, P., 'Equation for Stress-Strain Curves of Concrete,' ACI Journal, ACI, Vol.61, 1964, pp.345-350
  27. van Mier, J. G. M., 'Multiaxial Strain-Softening of Concrete,' Mat. and Struct., RILEM, Vol.19, No.111, 1986, pp.179-200 https://doi.org/10.1007/BF02472034
  28. Scavuzzo, R., Stancowski, T., Gerstle, K., and Ko, H.-Y., 'Stress-Strain Curve for Concrete under Multiaxial Load Histories,' Rep. NSF CME 80-01508, Dep. of CEAE, Univ. of Colorado, Boulder, Colo., 1983
  29. Launay, P. and Gachon, H, 'Strain and Ultimate Strength of Concrete under Triaxial Stress,' ACI, Paper 13, ACI Special Pubtication-34, 1972