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MATHEMATICAL ANALYSIS OF A NONDIMENSIONAL THREE
SPECIES FOOD CHAIN MODEL WITH RATIO DEPENDENCE

A. A. S. ZAGHROUT, N. JOHARJI, AND SALMA AL-TUWAIRQI

ABSTRACT. A model of three trophic level food chain with ratio dependence is con-
sidered. The existencem uniqueness and stability of its solutions are investigated.

1. INTRODUCTION

The classical prey-dependent predator-prey system often takes the general form of

1) {x%t) = zg(x) ~ cp(w)
y'(t) = (p(z) —d)y,
where, z, y stand for prey and predator density, respectively p(z) is the so-called preda-

tor functional response and ¢, d > 0 are the conversion rate and predator’s death rate
respectively. If

pla) = 25, g@) =r(1-7),

then (1.1)becomes the following well-known predator-prey model with Michaelis-Menten
functional response (3,6].

(1.2)

where, r, k, a, m are positive constants that stand for prey intrinsic growth rate, carrying
capacity, half saturation constant, maximal predator growth rate respectively. Recently
there is a growing evidences [5] that is in some situation, especially when predator have
to search for food, a more suitable general predator-prey theory should be based on the
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so-called ratio-dependent theory, which can be roughly stated as that the per capita
predator growth rate should be a function of the ratio of prey to predator abundance.
The system

(1.3) -
(

was studied by Hsu, Hwang and Kuang [7], Kuang and Beretta [2], Jost et al [1].

For the mathematical models of multiple species interaction, we studied a model
of two predators competing for a single prey with ratio-dependence in [2]. Another
important mathematical model of multiple species interaction is the so-called food
chain model. In the paper of Freedman and Waltman [4], the authors studied the
persistence a classical three species food chain model.

Mathematical models of many biological control processes naturally call for differ-
ential systems with three equations describing the growth of plant and top predator,
respectively. The interaction of these three species often forms a simple food chain.

In this paper, we shall study a Michaelis-Menten (or Holling type II) functional
response and its applications to biological control.

The rest of this paper is organized as follows: In section 2, we introduce the math-
ematical model, and we study the existence and uniqueness of solution. In section 3,
we investigate the stability of the interior equilibrium E.

2. THE MODEL:

Consider the following three trophic level food chain model with ratio dependence.

’ _ T xrz
x(t)—rm(l—%)—clalmém—@a?w_{_y_'_z, z(0) >0
2.1 ") =yl —d __ar
(2.1) vt =y 1+°’1alx3ug+z}’ ¥(0) >0
1(¢) = [—d e
Z(t) =z 2+e2a2$+y+z], z(0) >0

where, x,y, z stand for the population density of prey-predator and top predator, re-
spectively. For ¢, e;, a;, d;, i = 1,2 are the yield constant, maximal predator growth
rates, half-saturation constants and predator’s death rates respectively. r and k are the
prey intrinsic growth rate and carrying capacity respectively. Observe that the simple
relation of these three species: z prey on y and only on y, and y prey on x and nutrient
recycling is not accounted for this simple relation produces the so-called simple food
chain.
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For simplicity, we non-dimensionalizes the system (2.1) with the following scaling:

Tt-)Ea %—)ja y—y — =G, ka; — a;
7
d; - e _
?’L dla 75'_)61.
Then the system (2.1) takes the form
Ty zz
7)) =z(1-1z)— —c
() ( ) Cla1x+%+z 2a2x+y+z
| =9 bt
(2.2) Yyt =y 1+Cl€1a1x+y+z
z'(t):z[—dz+02€2——$——
awrt+y+z

Rewriting system (2.2) as

' (t) = Fi(z,y,2), =(0)>0
(2.3) y'(t) = Fa(z,y,2), y(0)>0
z F3(z,y,z), z(0)>0

~

—~
o~

h—¢
]

The function Fj(z,v,2), i = 1,2,3 are defined, they are continuously differentiable
in the domain {(z,y,2) : > 0,y > 0,z > 0}, obviously

li F; —0, i=1,23.
(2 (00,0 i(@,2) !

If we extend the domain of Fj(x,vy,2) to:{(z,y,2) : * > 0,y > 0,z > 0}, that is, if
we can show that

li F, =0,
(21,2)(0,0.0) i(@y.2)

then (0,0, 0) is an equilibrium point of (2.2).

. . . Ty

lim. F(z,y,2)= | 1—x)— lim ————

(2,9,2)—(0,0,0) 1(2:,2) (20,7)(0,0.0) =l —o)-a (2,9,2)—(0,0,0) G1Z + Y + 2
Xz

— lim _—
(2,9,2)—(0,0,0) G2Z + Y + 2
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let € > 0, we want to find 6 > 0 such that ﬁ; < eand |2 < ¢, whenever
0<Va?2+y?+22 <.
xy z||y z
S W (@yz>0)
aqr+y+z| laz+y+zl azrzt+y+z
< |yl (z <a1z+y+=z)
< V24 y? + 22
Tz
— < |z < V22 +y? + 22
PR |z| < vz +y
Thus, if we choose § = € and let 0 < /2% + y%? + 22 < 6, then Efx%gy—ﬁ < €, and
azw+y+z <e
Hence
lim Fi(z,y,z) =0.
oo 0%
Similarly

lim Fi(z,y,2z) =0, 1=2,3
caloon Y
Hence, we complete the (0,0,0) interior equilibrium point of (2.2). Also, (1,0,0) is
an interior equilibrium point (2.2).
The following theorem gives conditions for the total extinction of all the three species
and conditions of the extinction of both middle and top predators.

Theorem 2.1. Assume that ejc; > di and eaco >‘d2. If ——— 1+5 ng— > 1 and
x(0) 5 z(0)

<&, —<<9d. Th
y(0) =7 4(0) .

lim (z(t), y(t), 2(£)) = (0,0,0).

t—o00

Ifei+ecx <1 ford; >0,i=1,2. Then
lim (2(8), y(t), 2(1)) = (1,0,0).
el

Proof. From the above, we have tlim y(t) =0 and hm z(t) =0.
—00

t—oo
Ct Co . (0) Z(O) .
+ > 1 th 2/ 81, —= < 62. We claim that
Lo 140 y0) Sy T

t t z(t
:c( ) <41 Vt>0and ﬁ < 63 Vit > 0 otherwise, there is a ¢; > 0 such that Q < 4y,

y(t) y(t) y(t)

Assume first that
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z% ; < b9, for t € [0, t1] and Et = 01, ygt ; = §9. Thus for t € {O,tll, we have
1
r'(t) <z - ary Co add
ar+y+z a2x +y+ =z
c1 Cy I(O) Z(O)
<z|l-— — f — < 4, < 0o
9”[ T+o 1+ 52} y(0) =" y(0)

and
Y (t) > —diy, 2'(t) > —daz,

which yield

z(t) < z(0) exp [l ~3 351 — 1 fég]t
y(t) > y(0) exp[—di]t, z(t) > 2(0) exp[—da]t.

Then

z(0) exp lil—ﬁlﬂ—i%b]t 2(0)

<

z(t) y(0) exp[—d;1] y(0) <o

()

Then for all t, we have

Similarly —= < 4s.

C1 C2

:c(t)<:x(0)exp[1—1+61—1+52]t—>0 as t— oo.

This proves that tli)rgo (a:(t),y(t),z(t)) = (0,0,0).
Also, we have
dt)>r—22—ciz—cr=z(l—z—c1—c2)
Simple comparison argument shows that

lim infx(t) >1—c¢; —c2 > 0.
t—0o0

Hence for any c; + ¢z > € > 0 with d; > 0,1 = 1,2 y(t) — 0 and 2(t) —» 0 as t — o,
we have
tlg& <:c(t),y(t),z(t)> = (1,0,0).

Now, we consider the existence and uniqueness of the interior equilibrium

E*(x*,y*, 2"), 2%, y", 2" > 0.
From equations (2.2), we have
(erc1 —diay)z” —di(y* +27) =0
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and

(eacy — daag)r* — do(y" + 2*) = 0.
From the above two equations, we obtain

eicy —diay  excy — doay

dy da
Hence
. . eci—diar , exca—dgaz ,
vresTTg T T T,
and
x*y* x*z*
“(142%) — - =0
.’L‘( +l‘) 01a11‘*+’y*+2* 62a2$*+y*+z*
Also,
d d
x*(l _ LE*) — _1y* 4+ —22*
€1 (]
d ds, , .
<)+ )
€1 €92
{8 4)(eR )
€1 e dy
Hence
N di  d2) [eic1 —diaa
2.4 1— — 4+ = =
(2.4 (- < (B4 ) (22
d d —d
x*>1—<—1+—2) <6161 1a1>
€1 €9 d1
and
d _
1> (ﬁ + 3) (—————elcl dlal) (z* > 0)
(A] €92 d1
or
eicr —dar _ exca—draz b dy
dy do e; e
O

We have the following lemma.
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Lemma 2.2. The interior equilibrium point E*(x*,y*, 2*) of the system (2.2) ewists iff
the following conditions are satisfied

e|1c] > a1d1, (1)
('2_5) eaca > azdy, (ii)

eict —diar _di g4
—_— =422 il
a P (iii)

Also, we need the following lemma

Lemma 2.3. The solution z(t),y(t) and z(t) of (2.2) are positive and bounded for all
t>0.

Proof.  Obviously the solutions z(t), y(t), 2(¢) are positive for t > 0 and given any
0 <e<l,z(t) €1+ ¢ for t sufficiently large.
From (2.2), it follows that
! ! d d
w’+y-+i—=x(1—x)——1y———zz.
€1 €92 €1 €9

Since x — 22 < x and let d = min{d;,ds}, hence

/ /
w’+y—+z—§m—d<—y—+i)

€1 €9 €1 €2
=x—d<x+£+i> +zd
€1 €2

=(1+d)x—d<x+£+i>
(] €9

§(1+d>(1+e)—d<x+£+i>

€1 €9
=§—d(x+i+i>,
€1 €9

where
{=(1+d)(1+e).
But
(m+%+é) +d<x+j—1+:—2) =&
Hence

<w+£+i>ﬁg+6,

€1 €9
for sufficiently large t. Hence z(y), y(t) and z(t) are bounded. [
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If the death rate of top predator is no less than its maximum birth rate, we have the
following lemma

Lemma 2.4. If e1¢; < a1dy and esco < asdy, then ltlim y(t) = 0and tlim z(t) =0.
—0oC —r0oQ

Proof. From (2.2), we have

J = —y (a1d1 — erc1)z + da(2 + y)
aqzr+y+z '

This leads to ¢’ < 0, thus y(¢) is decreasing and positive. Hence tlim y(t) exists and
—0
nonnegative, we claim tlim y(t) = 0. Otherwise, there is a positive constant 7, such
—00

that tlim y(t) = n. Given that n > € > 0, there exist ¢y > 0, such that
-0

ly(t) —=m| <e for t>tp

Since 4
_i < 1.
a1 r+y+z
Then
y _—adizteaar—diy+z)  —di(y+2)
Yy QT +y+z 0 +y+z
Then

y(t) < y(to) exp[—d(t — to)]-
As t — oo, we have y(t) < 0, which is a contradiction.

Hence
lim y(t) = 0.
t—o00
Similarly, we can prove
lim z(t) = 0.
t—00
O
3. STABILITY OF E*:
In this section, we assume that E* exist and we shall study its local stability.
The variational matrix of (2.2) at E* is given by
mi1 M2 Mi3
Mg« = |ma1 maoe mos
m31 M3z N33
where
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di & y* di oz

mig=——+ -5 —
e1 €2zt el coz*
2 2
LBy b, &
mi3 = 2 et e 2 *
1 €1 2 €y C2T
* 2 * *
moy = dy - LAY Ay day
¥ e1cx* c* erc1)’
d2 *
1 Y
Mg = Mgg = ——~—— (mag, mo3 < 0)
€1 1T
e = d z* d% as 2 dpz* 1 doas (ma1 > 0)
31 =03 — ——— = -
T* ey cox* x* eacy |’
d% z*
m32 = M3z = ————
€9 CoX

The characteristic equation of M is
FON) = det(M — AI) = 0
= —>\3 + )\2(77111 + Moo + m33)
+ A(—mi1mag — mi1mas — maamas + MagMmas + Marmiz + Mm31m3)
+ (m11m22m33 — M11M32Ma3 — —M12M21M33 + M127M23M31
+ m13ma1Ms2 — M31M22M13)
Then the roots A of f(\) = 0 satisfy
(3.1) M4 AN Ad+ A3=0
where
Ay = —(ma1 + mag + ma3)
Az = miuimag + miima3 — mo1miz — M31M13

Az = (mazma; + maoamsi)(miz — mi3)

By the Routh-Huruitz criterion, a set of necessary and sufficient conditions for all the
roots of (3.1) to have negative real pats is

(3.2) A1 >0, A3>0 and A;A; > As.
In the folowing Theorem, a sufficient condition is given for the local stability of E*.

Theorem 3.1. If my; < 0,m12 < 0,m3 < 0 and mi12 < mi3. Then E* is locally
asymptotically stable.



102 A. A. S. ZAGHROUT, N. JOHARJI, AND SALMA AL-TUWAIRQI

Proof. Tt is easy to verify 4; > 0,1 =1,2,3, if my; < 0,m12 <0,m13 <0,mig <mi3
and calculate A1 45 — Az, then

A1 Ay — Az = —m3 maoy — miymas + maimaimia + M11ma1MI3 — mi1ma,
— M11M2aM33 + MaaMo1M13 + Me2M31M13 — M11M33M22
- m11m§3 + mM33mizmsa1 — (m33m21 + m22m31)(m12 - m13)
— MoaM31M12 + M33Ma1M13 + MeaM317M13
+ moam31(2my3 — mig > 0.

Hence E* is local asymptotically stable. O
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