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A NEW CONJUGATE GRADIENT MINIMIZATION METHOD
BASED ON EXTENDED QUADRATIC FUNCTIONS

ISSAM.A.R. MOGHRABI

ABSTRACT. A Conjugate Gradient (CG) algorithm for unconstrained minimization
is proposed which is invariant to a nonlinear scaling of a strictly convex quadratic
function and which generates mutually conjugate directions for extended quadratic
functions. It is derived for inexact line searches and is designed for the minimization
of general nonlinear functions. It compares favorably in numerical tests with the
original Dixon algorithm on which the new algorithm is based.

1. INTRODUCTION

Let A denote a symmetric and positive definite n by n matrix. For z € R", we define

q(z) = (1/2)zT Az + b z 4 .

Let F : R — R* denote a strictly monotonic increasing function (with a non-
vanishing first derivative) and define

(1) f(z) = F(q(x)),
where such a function f is called an extended quadratic function.

When a minimization algorithm is applied to f, the ith iterate is denoted by z;, the
corresponding function value by f; and its gradient by g;. The function and gradient
values of g are denoted by ¢; and G;, respectively, and the derivative of F at ¢; is
denoted by F;. We note that g; = F}G; and define o; = ¢;/c;;1 for each 4, where ¢; =
F;. 1t is assumed here that when applying a minimization procedure to an extended
quadratic function one only has specific knowledge of f;,o; and g;.

In order to improve the rate of convergence for more general functions, other than
the quadratic form, new algorithms have been suggested by several authors [1,2,3,4,5].
All of these algorithms derive an expression for ¢;g;;1, and hence include the property
that the extended quadratic f is minimized in a finite number of iterations assuming

exact line searches are used. In this paper this requirement is dropped, and the formula
for 0;g;+1is based on inexact line searches.
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2. DERIVATION OF o0;

For reference, we define a general algorithm for the classical CG-method as follows:

Given a starting point 2o € R™, function f(x) and its gradient g(z), compute pp =
~g(z) initially .Then iterate using ;11 = &;+a;p;, where o is determined by an exact
line search routine such as cubic interpolation (see [6] and [7]) and for i = 0,1,2,...
The new search direction is computed using the recurrence pi+1 = —gi+1 + B;pi, for
i>0.

Lemma 1.

Let G, 1= G(z; + aip;), which is consistent with the natural definition Gitj =
G(z; + jo;pi). Then the following holds (for a quadratic function):

Giy1 = 2Gi+% - Gi.

The proof is similar to that presented in [3].

Now define z; and p, € R" (for ¢ = 0,1,..) and zi41 = x; + a.p;, where «; is an
arbitrary positive real number such that g;ﬂ_lpi = (0. We now define the following
expressions for g} ; and g;\,, , as follows:

(2) i1 = giv1 — (95119:/97 9i)9i
and
(3) 91/0 = (9F1/29i/ 90 90)9i

so that the following lemma holds for the extended quadratic model.
Lemma 2.
If 0; = ci/cit1, where ¢; = FJ, then

0 = cifciy1 = ((gﬂ/zgm)(Q?Qi))/((gﬂgiﬂ)(giTJ,l/ggi)

T
- (g;:l/ggi+1) (g’z‘lj{-lgi)) .
Proof
For g;1+1, we have directly

(4) gi+1 = ci+1Git1 = cip1(Gi +  Api)

Using 2, 3 and 4, we have

g1 = cir1(Gi + aidp;) — ((cici1 (Gi + @i Api)TGy) [;GT Gi)eiGi.

(5) = cir10:(Api — (GiApi/GT Gi)Gy)
Multiplying (5) by a non-zero vector g;4+1 and dividing we get :

T
(9;191‘-%1)/(9;7’;1951/2) = 2Ci+1/Ci+1/2~
From Lemma 1 we have
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gi+1 = (2¢it1/¢iy1/2)9i11/2 — (civ1/ci)gi
Therefore,

T
gir1 = [(9719i+1)/ (9111971 219112 — (civa/ci)gi.
On the assumption that «; is an arbitrary positive value and p; is chosen to be a
non-zero vector, then

T
9F19i = ((919i+1) /(9711971 12)9T41 291 — (civr /)] gis
from which it follows that

T
civr/ei = [(91941)(974 1290/ (971971 ) (9T 90)) = gFi19i/ 9l 9
or, equivalently,

(95191 /2)(9F 90)

(6) g; = Ci/Ci+1 = 3
1 (gi—figﬂl)((gal/ggz) (9;+191+1/2)(9f+19i)

as required.

3. ALGORITHM EDX

In this section we first describe the CG-methods based on the quadratic model pro-
posed by Dixon in [6] which employs inexact line searches, termed (DX): this is modified
to be invariant to a nonlinear scaling of g(z). We call this the extended Dixon method
(EDX).

If we let a '*’ superscript denote an estimated quantity, then the search direction in
Dixon’s method p;+1 is given by the formula

Pit1 = —giy1 + Bips, for i > 0 and where po = —g(zo)-

Dixon presented several versions of the modified CG-method in [6]; we have selected
here two for extension, the well-known Hestenes and Stiefel, and the Fletcher-Reeves
versions, referred to as Dixon Versions EDXA and EDXB, respectively, with the

necessary changes made to incorporate o;, defined in (6). We therefore define the
respective EDX formulae

(EDXA) B = g;fl [0igi1 — 9;]/PiT[Uz‘9;+1 - 9i]
and
(EDXB) IB - Utgz+1gz+l/g*Tg:7

where the term g represents the estimated gradient term, namely the estimated value
of the gradient at z}, the point which would have been reached with exact line searches.
For a quadratic functlon the gradients can be evaluated as follows:

ga=g'+(01- g’“p’)y,, for i > 0, where g} = go, and y; = git1 — ;- The search
directions generated by th1s extended algorithm are not necessarily descent ones for an
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arbitrary function. In our experiments, we use the following test to check whether the
new direction is sufficiently downbhill:

(7) pﬁlgm > 0-7591-T+19i+1

Whenever relation (7) is not satisfied the iteration is restarted, as follows:

n

the estimated error-vector term is used as in [6], i.e, ep41 = Y €ipi , where g; =
i=0

(aigg;lpi) /(yFp;). This estimated error-vector term is added to Zn41 to find zn49, i€
Tnt2 = Tp+1+ €nt1 and the iteration is then restarted with .—g, 2

4. COMPUTATIONAL RESULTS AND CONCLUSION

Senevteen standard test functions are employed, in dimensions up to 1000, in order
to examine the overall effectiveness of the two new algorithms.

The algorithms were tested using C++ on a PIV 200 processor, using double pre-
cision. The effectiveness of modifying DX to EDX is tested with the two different
updating formulae (A and B) for the search directions. In each case the line search
accuracy parameter a is chosen to satisfy (7). The line-search algorithm used is a stan-
dard cubic interpolation (as in [9]). Table 1 contains the respective numerical results
for the EDX and DX algorithms, with versions A and B. The table reports the number
of function calls (NOF'), the number of iterations (NOI) and the corresponding function
value F' are given for each test function. Overall totals are also given for NOF and NOL

Comparisons are affected by the choice of test function, accuracy required, line search
and restarting criterion. Nevertheless, the computational results indicate clearly that
the extended versions give overall improvements of at least 9% on NOF or NOI, al-
though on individual functions there can be a loss of efficiency. The Hestenes-Stiefel
Version (A) is clearly inferior to the Fletcher-Reeves Version (B).

It is generally evident that the new algorithms have a clear advantage on higher
dimensions and general non-quadratic functions.
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All algorithms terminate when | f - £, | < 1 x 10710

TABLE : (1)

TEST EDXA EDX EDXB
FUNCTIONS | N NOI(NOF) | NOI(NOF) | NOI(NOF)
ROSEN 2 22(54) 25(57) 23(59)
CUBE 2 22(57) 24(55) 23(60)
BEALE 2 8(20) 9(43) 9(30)
BOX 2 9(41) 9(44) 9(41)
FREUD 2 6(18) 7(24) 6(21)
BIGGS 3 11(31) 13(37) 11(30)
HELICAL 3 18(39) 18(43) 17(36)
RECIPE 3 6(19) 6(21) 7(19)
MIELE 4 30(83) 30(93) 28(77)
POWELL 4 31(67) 29(69) 23(59)
WOOD 4 19(42) 18(56) 20(41)
DIXON 10 17(37) 18(46) 23(49)
OREN 10 12(64) 12(55) 13(56)
NON-DIGN 20 20(46) 22(54) 21(47)
TRI-DIGN 30 28(57) 28(63) 29(59)
OREN 30 21(95) 21(85) 23(99)
SHALLOW 40 6(18) 6(30) 6(20)
FULL 40 39(79) 39(81) 38(83)
EX-ROSEN 60 23(57) 26(77) 24(60)
EX-POWELL 60 40(83) 35(89) 42(70)
EX-WOOD 60 17(42) 18(66) 18(48)
EX-POWELL 80 43(88) 39(90) 41(82)
WOLFE 80 48(75) 37(81) 41(79)
NON-DIGN 90 23(53) 22(55) 23(59)
EX-WOOD 100 19(42) 18(46) 19(39)
EX-ROSEN 100 23(57) 26(60) 23(48)
WOOD 200 29(65) 30(62) 30(58)
POWELL 200 52(133) 44(95) 41(93)
POWELL 1000 | 89(240) 93(198) 85(186)
TOTAL NOI | 731 722 716

NOF | 1802 1875 1708

REFERENCES

11

[1] R. Fletcher and M.J.D. Powell, ” A rapidly convergent descent method for minimization”, Com-
puter Journal 6 (1963), 163-168.



12 ISSAM.A.R. MOGHRABI

[2] S.S. Oren, ”Self-scaling variable metric algorithm, Part II”, Management Science 20 (1974), 863-
874.
[3] S.S. Oren, ”On the selection of parameters in self-scaling variable metric algorithms”, Mathemat-
ical Programming 3 (1974) 351-367.
[4] S.S. Oren and D.G. Luenberger, ”Self-scaling variable metric algorithm, Part I”, Management
Science 20 (1974) 845-862.
[5] S.8. Oren and E. Spedicato, ”Optimal conditioning of self-scaling variable metric algorithms”,
Mathematical Programming 10 (1976) 70-90.
[6] Dixon, L.C.W. Conjugate gradient algorithm quadratic termination without line searches, Journal
of the Institute of Mathematics and its Applications 15, 1975.
[7] C.G. Broyden, "The convergence of a class of double rank minimization algorithms 11. The new
algorithm”, Journal of the Institute of Mathematics and its Applications 6 (1970) 221-231.
[8] S.S. Oren, "Self-scaling variable metric algorithm without line search for unconstrained minimiza-
tion”, Mathematics of Computation 27 (1973), 873-885.
[9] G.P. McCormick and K. Ritter, "Methods of conjugate directions versus quasi-Newton methods”,
Mathematical Programming 3 (1972) 101-116.
[10] M.C. Biggs, ”Minimization algorithms making use of non-quadratic properties of the objective
function”, Journal of the Institute of Mathematics and its Applications 8 {1971) 315-327.
[11] M.C. Biggs, " A note on minimization algorithms which make use of non-quadratic properties of
the objective function”, Journal of Institute of Mathematics and its Applications12 (197 3) 337-338.
[12] H.R. Hestenes and E. Stiefel, ”Methods of conjugate gradients for solving linear systems”, Journal
of Research of the National Bureau of Standards, 49 (1952), 409-436.
[13] L. Nazareth, ” A relationship between BFGS and conjugate-gradient algorithms and its implemen-
tations for new algorithms”, SIAM Journal on Numerical Analysis,16 (1979}, 794-800.
[14] K.W. Brodlie, ”Some topics in unconstrained minimization”, Ph.D. thesis, University of Dundee,
(1973).
[15] B. Bunday, ”A Basic Optimization Methods”, Edward Arnold, Bedford Square, London, (1984).

Appendix
All the test functions used in this paper are from general literature
1. Rosenbrock banana function, n=2,
f=100 (x2-x%)2+(1-x1)? , x0 =(-1.2,1.0)T.
2. Cube function, n=2,
f =100 (x2-x3)2+(1-x1)2, x0=(-1.2,1.0)T.
3. Scale function, n=2,
f=(1.5-x1 (1-x2))%+ (2.25 - x; (1 - x2))%+ (2.625 - x1(1 - x3))2, x0 = (0,0).
4. Box function, n = 2,
f=3" (e "z -e-xz - e + e-10%) 2 where z; = (0.1) and xo = (5,0)7, i=L,...
5. Frudenstein and Roth function, n=2,
f=[13+x1 + ((5-X2)X2-2)X2]2 + [-29 + x1 + ((1+X2)X2-14)X2]2, Xg = (30,3)T.
6. Recipe function, n = 3,
f= (x1-5)% + x3 + x3/(x1-x2)?, x0 = (2,5,1)T.
7. Biggs function, n=3,
=37 (e~=1% . x3 e~ =% 4 5e=1071) 2 where z; = (0.1) iand xo= (1,2,1)7,i=1...
8. Helical Valley function, n=3,
f =100 { [x3-1.0 ]2 + [r-1]® }+ x%,where r=1/2 arctan (x2/x; ), for x; > 0
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and r = 1/2 + 1/2 arctan (xg/x; ) for x; < 0, xp = (-1,0,0)T.

9. Miele and Cornwell function, n = 4,

f= (&%t - 1) + tan 4 (x3 - x4) + 100 (x2- x3)% + 8x1+ (xa- D2, x0= (1, 2, 2, 2)T.

10. Dixon function, n = 10,

f=(1-x )% + (I- x10)% + 30, (%2 - x+1)% , x0 = (-1;.. )T, i=2,...

11. Oren and Spedicato power function, n = 10,30,

f=30",(0-x2)%,% = (1.~

12. Non diagonal variant of Rosenbrock function, n = 20, 90,

f= 37,0100 (x - ) + (1-% )], %0 = (-1,..) T, i=L,.

13. Tri-diagonal function, n = 30,

f= [ 2?22(2&‘ - Xi—1 )2 ] , X0 = (1;....)T.

14. Full set of distinct eigenvalues problem, n = 40,

f= (x-1)2 + 10 ,(2% - xi_1)? , x0 = (L;..)T.

15. Shallow function (Generalized form), n = 40,

=103 - %0 )2+ (1-x21)%, %0 = (-2 )T

16. Powell function (Generalized form), n = 60, 80,

f= Z?ﬁ[( Xgicg + 10 X 452)2 + 5 (x gi1 - Xai )2 + (xai-2-2 Xgi-1)* + 10 (Xai-s -
X,

xp = (3,-1,0,1;..)T.

17. Wood function(Generalized form), n = 60,100,

S AE = [100 (xgi-2 - x%_g)? + (1- xa5-3)+ 90 (x4 - x5;_1)* + (1 - %4i1)’

+ 10.1 (x 45-2 - 1)2 + (x44- 1)2 + 19.8 (x44-2 - 1)()(4,',1), Xg = (-3,-1;—3,—1,...)T.
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