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Systems Engineering Principles Revisited

s
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After attending the special lecture by Halligan on "The Principles of Systems Engineering” at the 2002

KCOSE workshop, the author tried to collect similar SE principles scanning throughout several SE text books
and internet sources. During this process it is found that INCOSE once established a SE-Principles WG and

tried to collect SE-principles.

They tried to make distinctions among pragmatic, mathematical, and

philosophical principles. The result of this effort to collect various SE-principles showed that, including the
INCOSE SE-Principles WG, most authors seem only succeeded in generating the pragmatic SE-principles but

failed in both mathematical and philosophical SE-principles.
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1. Capture and understand requirements, measures of
effectiveness (MOEs), goals and value of outcomes before
committing to the solution to a problem.

2. Ensure that the requirements are consistent with what is
believed will be possible in solutions at the time of physical
implementation, i.e., are feasible.

3. Treat as goals desired characteristics that may not be
feasible.

4. Define system requirements, measures of effectiveness
(MOEs), goals and solutions having regard to the whole of the
(remaining) life cycle of the system of interest.

5. Design a solution by dividing the big problem into a set of
individually well defined smaller problems, i.e., by defining the
required characteristics of each element of the solution
(including both product and process elements).

6. Use sequential development (waterfall, grand design, "big
bang", etc.) for design where requirements (etc) are well
defined and stable, and solutions are relatively simple or well
understood.

7. Use incremental development where requirements (etc) are
well defined and stable, but solutions have risk due to
technology and/or due to complexity.

8. Use evolutionary development where requirements (etc) are
as well defined as is possible in the circumstances, but remain
inadequately defined, or are subject to change.

9. Use a stage-based, stage gate, risk-driven style of



development as an overall strategy for system development.

10. All of the systems engineering process elements exist
within the context of sequential, incremental, evolutionary and
risk-driven style of development.

Design the development process to match the nature of the
problem, using the SE process elements as building blocks.

11. Maintain a distinction between the statement of the
problem to be solved and the description of the solution to
that problem, for the system of interest and for each element
of the selected solution.

12. Baseline the statement of the problem to be solved and
the description of the solution to that problem.

Control changes to requirements (etc) and 1o design,
maintaining traceability to the applicable baseline.

13. Identify and develop solution alternatives that are both
feasible (i.e. can meet requirements) and are potentially the
most effective.

NOTE : MOEs could include development cost, unit cost of
production, time-to-market and other measures unrelated to
capability of the product when used.

14.  Develop

concurrently, and in balance, with the solution to system of

solutions for relevant enabling systems

interest.
NOTE
possible the creation, or ongoing availability for use, or the

An enabling system is a system which makes

system of interest during some part of its life cycle, e.g. a
production system, a maintenance system.

15. Except for simple problems, develop logical solution
descriptions (description of how the system is to meet its
requirements) as a means of developing physical solution
descriptions (description of how to build the system).

16. Be prepared to iterate in design to drive up the benefit, to
the applicable stakeholders, of the outcomes of design.

17. Select between (feasible) design alternatives based on the
evaluation of expected benefit to applicable stakeholders, i..,
on expected effectiveness.

18. Subject level of risk, independently verify work products
(is the job done right, i.e., does the work product meet the
requirements for that work product?).

19. Subject to level of risk, independently validate work
products (is the right job being done, ie., does the work
product meet the need for that work product?).

20. Some management is needed to plan and implement the
effective and efficient transformation of requirements (etc) into
solution descriptions - this is unlikely to just happen.
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1. SE is about building a world. It should be an
expression of a world view which is well-founded,
complete, and ethical.

2. A system exists by virtue of and to fulfill a
purpose for its environment.

3. SE uses mathematical rigor in executing all tasks
for which it is appropriate.

4. There is no avoiding process. The only choice is
shortcutting and
skipping steps, doing steps out of order) and good

between poor process (freestyling,

process (some realization of a minimal set of
representations and manipulations, see below)

5. SE uses formal representations of systems and
formal manipulations on those representations to do its
job. There is at least one minimal (necessary and
sufficient) set of such representations and manipulations.

* Note: SE is itself a system, lLe., self-referential

6. SE, ideally, is a complete and seamless process, i.e.,
guided by a

requires no

necessary and  sufficient,
framework-roadmap that

process
improvisation,
supported by methods and tools which are sufficient for
every task and full integrated and compatible.

7. Every system realization has a unique inherent
ontogeny. The job of the SE is to discover and facilitate
the unfolding of an ontogeny close enough to the
inherent ontogeny of a good-enough system.

* Corollary: The ontogeny and end point are
interdependent. At each decision point on the outogeny
path we choose the branch which seems to lead to the
better end point. The image of the end point from any
point on the path is a fraction of the path taken to that
point.

8. The only product of SE is information (SE does not
produce the end system). The information is a set of
instructions and supporting data to pre-existing
production and operation capabilities that cause the
to be produced,

improved over its useful life cycle.

system operated, maintained, and
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"PRAGMATIC
ENGINEERING

PRINCIPLES”  OF  SYSTEMS

1. KNOW THE PROBLEM, THE CUSTOMER, AND
THE CONSUMER

2. USE EFFECTIVENESS CRITERIA BASED ON
NEEDS TO MAKE SYSTEM DECISIONS

3. ESTABLISH AND MANAGE REQUIREMENTS

4. IDENTIFY AND ASSESS ALTERNATIVES SO
AS TO CONVERGE ON A SOLUTION

5. VERIFY AND VALIDATE REQUIREMENTS AND
SOLUTION PERFORMANCE

6. MAINTAIN THE INTEGRITY OF THE SYSTEM.

7. USE AN ARTICULATED AND DOCUMENTED
PROCESS

8. MANAGE AGAINST A PLAN
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1. System Purpose

At the any Systems Engineering
programme, a succinct statement of the purpose of the
system should be documented and accepted by all
stakeholders.

2. System Definition Repository

A repository of information on the system being
developed should be managed, controlled and accessible
to all parties involved.

3. Parallel Process and Product Development

The Systems Engineering Process should be developed
and tailored concurrently with the development of the
system products themselves.

4. Multiple Views

Stakeholders will have different perspectives of the
system being developed and these viewpoints should be
developed as representations of a unified
definition.

initiation of

system

5. Progressive Improvement

Each iteration of the Systems Engineering Process
should aim to be at least 80% complete.

6. Top Tens

The justification for a project should be characterised
in at most ten reasons. The design solution should be
justified in at most ten reasons. These reasons may be
qualitative, but should be quantified wherever possible.

7. Measure Early

The key to a good Systems Engineering metric is to
first decide what needs to be measured and then develop
a tool or method to measure it.

8. Synergy with Project Management

Large complex projects benefit significantly from the
constructive tension between the Project Manager and
Systems Engineer who must communicate well and form
a partnership.

9. Human System Integration

Humans should be viewed as part of the system.
Their roles should not be defined by default or assumed,
but must be evaluated and assessed.

10. Selling Systems Engineering

On a project Systems Engineers must have and use
soft skills to sell the Systems Engineering process and
product.

11. Emergent Behaviour

The behaviour that emerges when sub-systems are
integrated into the super-system should be engineered to
maximise desirable and minimise detrimental
performance.

12. Architecture Based Work Breakdown

The project Work Breakdown Structure (WBS) should
match the target system architecture.

6. Adamsen T1¢] 93 (2002)

ol e 129 H2 Aed Aagdxyelsd matA
A & 7 FE ANzddxYoly A Fefsign "A
Framework for Complex Systems Development” chapter
7. A Potpouri of SDF-Derived Principles® &7 Bl &

1. General

1.1 A system architect is responsible to define the
interfaces to his/her system, but he/she may not have
control over those interface external to his/her system.

1.2 A sound architecture and a successfully managed
program consider the total context within which the
system must function over its full life cycle.

It is not sufficient to develop an architecture for a
deployed system that does not consider all contexts in
which the manufacturing,
integration and test, deployment, initialization, normal

system must function:
operations, maintenance operations, special modes and
states, and disposal activities.

2. Risk

2.1 Acceptable risk is a key criterion in deciding to
move from one activity to the next. The challenge is to
quantify risk in an accurate and meaningful way.

2.2 Allocation of resources is a key basis by which to
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measure and monitor risk.

Risk in a system development activity can result from
insufficient margin in technical, cost, and/or schedule
allocation.

23 Program risk increases exponentially with
requirements instability.

Because upper-level requirements drive lower-level
designs and requirements, and because the number of
system

program hierarchy, a few unstable top-level requirements

elements increases exponentially down the
can affect many lower-level system elements.

2.4 Risk is difficult to manage if it has not been
identified.

25 In conceptual architecting, the level of detail
needed is defined by the confidence level desired or the

acceptable risk level that the concept is feasible.

3. Functional Analysis

3.1 A function cannot be decomposed without some
reference to implementation. That which enables the
decomposition of a function is knowledge and/or
assumptions about its implementation.

32 A functional decomposition must be unique.
Prescribed functionality describes “what” the system
must do and, in order to be self~consistent, that
functional description must be unique.

3.3 The functional partitioning is not unigue. There
are many ways to partition functions.

34 The functional definition must include both
functionality and associated performance in order to be
implementation. It is necessary but not

sufficient for implementation to define only required

useful in

functionality. Performance must also be prescribed in
order for a function to be implemented in a meaningful
way.

35 Within the same tier, the "what” (Requirements
Development) drives the "how” (Synthesis Activity).
Form must follow function. Implementation, by definition,
performs a function. It is not rational to try to determine
"how” to perform a function that has not been identified.

36 With respect to interaction between hierarchical
tiers, the "how” above drives the "what” below. This is
a very important principle and has implications in areas
such as specification development.

When a customer or next-level-up design team
defines functionality in a specification several tiers down,
the probability of introducing problems increases because
the intermediate decompositions may not be consistent
with the prescribed requirements.

4. Allocation
41 Margin unknown is margin lost. In order to

optimally manage a system development, all system
margin must be known to the architect having authority
to allocate it. It is generally cost-effective to reallocate
resources to handle issues. In order to do this effectively,
the architect needs to know where the margin resides.

42 During an architecting effort, cost and schedule
should be allocated and managed just as any other
technical resources.

5. Process

5.1 Process understanding is no substitute for technical
understanding. This is exemplified by the principle that a
decomposed  apart from
implementation. It is the technical understanding of the
facilitates  the

function can not be
architecture  implementation that
decomposition.

52 Before a process can be improved it must be
described.

53 Tools should support the system development
process, not drive it.

54 A central purpose of the SDF is to provide every
stakeholder with a pathway for understanding the
system and the state of its development.

55 There is a necessary order in which technical
activities must be performed. Some notion of "what” the
system must do must precede any effort to determine
"how” to do it.

Some notion of "how” the system will be implemented
must precede any determination of system "how well” it
performs.

Because trade analyses are based upon cost, schedule,
and/or technical criteria, they must follow the synthesis
activity.

A trade analysis can not be performed without some
definition of implementation.

Trade analyses are based upon cost, schedule, and
technical criteria. These can not be determined without
some relation to implementation.

56 Any technical activity can be categorized as either
a "what”, "how”, "how well”, "verify”, or "select” activity.

This is the primary organizing principle of the
generalized SDF.

5.7 Describing the System Engineering Process in both
the time domain (output evolution) and the logical
domain (energy distribution) facilitates its application to
many contents.

58 A system is
boundaries that performs work on an input in order to

"any entity within prescribed

generate an output.”

59 Given the above definition of "system”, the same
system development process can be applied at any level
of design development.
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510 The development process must include not only
the deployed system but also all necessary supporting
entities.

A sound architecture involves the architecture of
supporting system elements as well as the element that
actually performs the mission functions directly.

Interface can (and should be) defined by the technical
process, These help determine roles and responsibilities
of teams, information flow and control, subcontract
boundaries, etc.

6. Iteration

6.1 Iteration generally occurs for one of three reasons
. optimization, derivation, or correction.

Optimization of a design (at some level of fidelity) by
definition, results in a change to that design. Where
change is necessitated, feed back and/or iteration occurs.
This, of cause, is distinct from optimization techniques
that are used to develop a design based upon known
parameters (e.g, linear, non-linear, and integer
programming techniques). Therefore, when optimization
is necessitated there is often feed back to the
Requirement Development and/or Synthesis activities.

Derivation refer to those situations where lower level
design must be done in order to provide the needed
confidence level of the architecture at the level above.

Correction covers that broad category of issues that
arises as a result of errors.

6.2 Always try re-allocation before redesign.

It is usually less expensive to reallocate resources
than it is to redesign.

6.3 The cost of rework increases exponentially with

time.
] It is relatively easy to modify a specification. It is
more difficult to modify a design. It is still more difficult
to modify several levels of design and decomposition. It
is vet more difficult to modify hardware when it is in
manufacturing, still harder during integration and test,
still hard once deployed, and so on.

7. Reviews

7.1 A central purpose of a Major Milestone Review is
to stabilize the design at the commensurate level of the
system hierarchy.

At the first major milestone review, for example, the
primary objective ought to be to stabilize the system
level architecture and the lower level requirements
derived from it. This facilitates proceeding to the next
level of design with an acceptable level of risk.

8. Metrics
8.1 A metric’s "coefficient of elusivity” is proportional

to the definition resolution of the process it is supposed
to measure.
defined and
implemented, the more easily it can be accurately
measured.

This is a significant contributor to the difficulty of
defining useful system engineering metrics.

Lack of a sufficiently detailed and universal process
makes universally applicable metrics difficult to define.

The more accurately a process is

9. Twenty "C's"” to Consider.

9.1 CONTROL

Who's minding the store and how?

9.2 CONTEXT

How does this system fit into the next larger system?

9.3 COMMONALITY

Can it be the same for all?

9.4 CONSENSUS

Does the customer agree with our interpretation?

95 CREATIVITY

Have all the creative solutions been considered?

96 COMPROMISE

Are all system parameters properly balanced?

9.7 CHANGE CONTROL

Are all system impacts understood?

9.8 CONFIGURATION MANAGEMENT

Is everyone working to the current configuration?

9.9 COMPREHENSION

Is the system understood in terms of what it must do
and how it works?

9.10 CHARACTERIZATION

Has the required system functionality, performance,
and rationale been defined and communicated?

9.11 COHERENCE

Does the system function as an integral whole?

9.12 CONSISTENCY

Have all conflicts been resolved?

9.13 COMPLETENESS

Has the system been fully defined?

9.14 CLARITY

Have all ambiguities been removed?

9.15 COMMUNICATION

Is there good communication between all stakeholders?

9.16 CONTINUITY

Will successors know it was done this way?

9.17 COST EFFECTIVENESS

Is the system over designed?

9.18 COMPETITIVENESS

Can it be done better, faster, cheaper?

9.19 COMPLIANCE

Does the system do what it is required to do?

9.20 CONSCIENCE
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Have we done our best?

10. Suggestion for Implementation In Industry

( "process du jour syndrome” @ reluctance to support
yet another three-lettered process to fix all program
problems.)

10.1 Implementation of the “SDF” is "tailored” to the
specific application by identifying up front what the
required input and output will be for each SDF activity.

This can be accomplished with the work sheet,
provided in Appendix A, which provides a framework for
identifying outputs as well as release status and risk
assessment.

102 Exit criteria is developed for each Major
Milestone Review. These criteria are derived directly
from the outputs identified in Chapter 5.

The fidelity or “completeness” of each output is
defined as a function of time along the program time
line.

In addition, the purpose for each major review is
clearly defined, as discussed in Chapter 6.

10.3 Appendix C. Provides an example of Exit Criteria
for typical Major Milestone review derived from the
outputs of the SDF.

For each Major Milestone Review, the program must
produce the generalized output defined in Chapter 5. In
so doing, the structured approach is followed by default.

104 There are several reasons for moving the
implementation strategy in this direction.

While SDF training courses have been, in general,
very well received by engineers in industry, there is
still a significant element of the "Don’t tell me how to
do my job” attitude. This is despite the fact that even a
cursory evaluation of Chapter 5. must acknowledge that
it is only a framework that is constructed.

A second reason for this approach is that the outputs
identified are a necessary element of most any
development program.

How the outputs are generated is not prescribed, nor
is the format in which they must be presented dictated.

It is simply required that they be completed and

presented at the Major Milestone Reviews.
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1. Multitask heuristics

1.1 (D) Performance, cost, and schedule can not be
specified independently.

At least one of the three must depend on others.

1.2 (D) With few exceptions, schedule delays will be
accepted grudgingly; cost overruns will not, and for good
Teason.

1.3 (D) The time to completion is proportional to the
ratio of the time spent to the time planned to date.

The grater the ratio, the longer the time to go.

1.4 (D) Relationships among the elements are what
give systems their added value.

15 (D)
universality.

Efficiency is inversely proportional to

16 (D) Murphy's law, "If anything can go wrong, it
will" -

1.6.1 (P) Simplify, Simplify, Simplify.

162 (P) The first line of defense against complexity
is simplicity of design.

1.6.3 (P) Simplify, combine, and eliminate.

164 (P) Simplify with smarter elements.

1.65 (P) The most reliable parton on an airplane is
the one that isn’t there - because it isn't needed.

1.7 (D) One person’s architecture is another person’s
detail. One
component.

1.7.1 (P) In order to understand anything, you must

person’s system is another person’s

not try to understand everything.

1.8 (P) Don’t confuse the functioning of the parts for
the functioning of the system.

1.9 (D) In general, each system level provides a
context for the levels below.

1.9.1 (P) Leave the specialties to the specialists. The
level of detail required by the architect is only to the
depth of an element or component critical to the system.

But the architect must have access to that level and
know, or be informed, about its criticality and status.

1.92 (P) Complex systems will develop and evolve
within an overall architecture much more rapidly if there
are stable intermediate forms than if there are not.

110 (D) Particularly for social systems, it is the
perceptions, not the facts, that count.

111 (D) In introducing
change, how you do it is often more important than

technological and social
what you do.

1.11.1 (P) If social cooperation is required, the way in
which a system is implemented and introduced must be
an integral part of architecture.

1.12 (D) If the politics don't fly, the hardware never
will.

1.12.1 (D) Politics, not the technology, set the limits of
what technology is allowed to achieve.
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1.122 (D) Cost rules.

1.12.3 (D) A strong, coherent constituency is essential.

1124 (D)
problems.

1125 (D) There is no such thing as a purely
technical problem.

Technical problems become political

1.12. 6 (D) The best engineering solutions are not
necessarily the best political solutions.

113 D) Good
Implementations matter.

1131 (P) To remain competitive, determine and

products are not enough.

control the keys to the architecture from very beginning.

2. Scoping and Planning

2.1 The beginning is the most important part of the
work.

2.2 Scope! Scope! Scope!
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