International Journal of CAD/CAM Vol. 3. No. 2, pp. 111-117 ({2003) INTERNATIONAL

JOURNAL OF
CAD/CAM

An Efficient Algorithm for Real-Time 3D Terrain Walkthrough

Michael Hesse and Marina I.. Gavrilova®
Department of Computer Science, University of Calgary, Calgary, Alberta, Canade

Abstract — The paper presents an cfficient algorithm based on ROAM for visualization of large scale terrain models in real-
time. The quality and smoothness ol the terrain data visualization within 2 3D interactive environment is preserved, while the
complexity of the algorithm is kept on a reasonable level. The main contribution of the paper is an introduction of 2 number
of efficient techniques such as implicit coordinates method within the patch array representing ROAM and the viewpoint
dependent triangle rendering method for dynamic level of detail (LOD) updates, In addition, the paper presents experimental
comparison of a variety of culling (echniques, inciading a newly introduced method: relational position culling. These
techniques are incorporated in the visvalization software, which allows to achieve more realistic terrain representation and the

real-time level of detail reduction.

Keywords: Terrain rendering, ROAM, Troplicit coordinates method, Culling techniques, GIS

1. Introduction

High quality rendering and meshing techniques for
displaying complex geographical data, such as terrain
models, play an important role in the fast growing
domain of CAD oriented towards Geographic Information
Systems (GIS). According to a recent review, conducted
as a part of Virtual Terrain Project on convergence of
the fields of CAD, GIS and visual simulation [13],
even today the vast majority of CAD is only 2D
blueprints, not 312 models. The conversion from 2D to
3D iy generally a difficult process requiring highly
efficient algorithms, and there are practically no freely
available tools for 3D CAI that could be useful in GIS.
In addition, for exploring different kinds of geographic-
based data sets on screen it is necessary to display data
at interactive frame rates. Because of the inherent
geomeltric complexity, this goal is often bhard to
achieve, unless the original data is approximated in
order to reduce the number of geometric primitives that
need to be rendered. This problem is particularly
prevalent in applications dealing with large polygonal
surface models, such as digital terrain modehing and
visual simulation.

The paper addresses the above problems by introducing
an efficient and easy to wmplement algorithm for
visualization of large scale terrain models n real-time.
The quality and smoothness of terrain data visualization
within a 3D interactive environment is preserved, while
the complexity of the algorithm is kept on the

*Correspending avthor:
Tel: +1-403-220-5105
Fax: +1-403-284-4707
E-mail: marina@cpsc ucalgary.ca

reasonable level. The Real-Time Optimally Adapting
Mesh (ROAM) approach is used as an underlying
model. We inroduce a number of cificient techniques
such as implicit coordinates method within the patch
array representing ROAM. the viewpoint depeadent
triungle rendering method for dynamic Level of Detail
{LOD) updates and some culling techniques. The
efficiency is confirmed by experiments conducted on
greyscale Digital Elevation Maps.

2. The Motivation

The two traditionally used techniques for surface
representation and visualization of terrain models are
the TIN (trangulated irregular network) |14], and the
uniform grid {5]. They are typically used to address
problem of mesh simplification, although having some
significant drawbacks preventing on-the-fty generation
of multiple levels of detail. TIN models, for example,
require a highly extensive computattonal effort for their
generation. Because TINS are non-uniform in nature,
surface following (e.g. for animation of objects on the
surface) and intersection {(e.g. for collision detection,
selection, and queries) are hard to handle etficiently.
This factor is especially important in many applications,
such as games and CAD, where dynamic deformations
of the mesh may occur. The most common drawback
of regular grid representations is that the
polygonalization is never optimal |7]. Large, flat surfaces
may require the same polygon density as small. rough
areas do. This problem may be alleviated by reducing
the overall complexity and applying temporal blending,
or morphing, belween different levels of detail {12].
Some visual simulation systems handle tansitions
hetween multiple levels of detail by “alpha blending”

http://www.ijcc.org
mailto:niarina@cpsc.ucalgary.ca

112 Internationaf Journal of CAD/CAM Vol 3. No. 2, pp. 111~117

two modcls during the transition period. Ferguson [4]
claims that such blending techniques between levels of
detal may be visually distracting. and discusses a
method of Delaunay (riangulation which smoothly
matches edges across areas of dilferent resolution.
However. this method is inherently difticult to implement.

Another approach based on maintaining of Real-time
Optimally Adapting Meshes (ROAM) was introduced
by Lindstrom [7]. and utlized by DcBerg and
Duchatneauy (2, 3]. The approach suggested n [7] 15
based on a hicrarchical quadiree technique. In order to
reduce the projected pixcl crror, the terrain is dynamically
trtangulated in a bottom up fashion according to the
distance to the point of view. Since resolution s
allowed to change smoothly, the result is a much better
image quality. However, thts algorithm still has a room
for improvement. When the viewpoint is changing, the
iangulation is conunuously updatimg, resulting n a
so-called “popping”™. As thc obscrver approaches an
area with detail information, this detail will suddenly
appear at a certain distance. Another problem. crucial
for ROAM algorithms. is controlling a smoothness and
quality of the rendered 1image. While many simplification
methods are mathematically viable, the level of detail
generation and selection are often not directly coupled
with the screen-space error resulting from the
simplification.

To cradicate these problems, a number of approaches
were suggested. A rapid geomorphing algorithm,
performing top-down manipulations on the quadiree
data structure, was presentedt in [11]. A recently proposed
method of view-dependent refinement allows to build a
mesh with a small number ol triangles that for a given
view is a good approximation of the onginal. dense
mesh [8). Novel methods for ROAM optimization,
utilizing a variety of culling techniques, continue w0
cevolve [1.6,8, 14]. As can bhe seen from the above
discussion, ¢flicient and easy algorithms for displaying
complex geographical data are sull in high demand,
and this paper introduces one of them and discusses its
performance on an example ol real-time visualization
of 3D Digitai Elevation Models.

3. The Proposed Approach

Real-time Optimally Adapting Mesh (ROAM) method
is sclected as an extendable, efficient toal for internal
data representation and dynamical updates of the terrain
model. The method is extended with an origtnal implici
coordinares method within the patch array and rhe
viewpoint dependent triangle rendering method for
dynamic level of detail (LOD) changes. The method is
characterized by the following set of unique features:

+ Smooth. conlinuous changes between different

surface levels of detatl

* Dynamic generation of levels of detail in real-me

« Introduction of implicit coordinates mcthod within

the patch array for morc cificicnt ROAM
representation
* Introduction of the viewpomt dependent (nangle
rendening method tor dynamic level of detail (1.OD)
updates
* Implementation of culling techniques, including the
original Relational Position cuiling for more elficient
terrain rendering
* Flexibility n choosing/selecting various culiing
techniques
* Reduction in the amount of time required to achieve
a given triangle count
+ Application of emror metnes for increased smoothness
and continuity
The terrain data sets studied are the simple gradual
contour changes and the complex steep contour changes,
represcnted by greyscale Digital Elevation Maps ol
1024 pixels by 1024 pixels. Each experimental set is
mtemally represented by three quadrant detail levels,
corresponding to 16, 64 and 128 nodes per side within
the binary tree structure. The load umc, the 1ol
number of triangles per path, the total number of culled
triangles per path, the number of frames per second and
the number of tnangles per [rame are examined lor this
structure. The occlusions culling techniques arc
individually and collectively combined with ROAM
technique and examined with the different representations
of detail levels to verily the algorithm {easibility and
effliciency.

3.1. Digital Elevation Model (DEM)

Digital Elevation Model (I21:M) can refer either to a
specific clevation file format or to sources of elevation
data in general. DEM data is usually stored as an array
of regularly spaced elevation values, referenced
horizomally either 10 a Universal Transverse Mercator
(UTM) projection or to a geographic coordinate system.
The grid cells are spaced at regular miervals along
south to north profiles that are ordered from west o
cast. A standard grid posting is interpolated dircctly
from the contour files to create DEMs with 10 - 90
meter (<i - 3 arc second) resolution (depending on the
source paper map scale or contour interval)y [1(]. Two
areyscale Digital Elevation Model (DEM). representing
progressive conlours with gradual elevation changes
and sudden steeper elevation changes (Fig. 1) were
studied.

3.2. Real-time terrain rendering algorithm

Our approach w terrain data rendering 1s based on
the Real-ume Opumally Adapting Mesh (ROAM)
method (see |7]). The method presents a highly flexible
and adaptable method [or representing continuous mesh
with contiolled Level of Detail. It allows controlling the
detals of a mesh and o maximize the quality and
mimmize the number of triangle primitives vsed in the
process, The ROAM-based system constructs a consistent

Michael Hesse and Marina L. Gavrilova

Au Efficient Algovithm for Real-Time 3D Terrain Walkthrough 113

Fig. 1. Graduw) elevation changes {left) and steep elevation chianges (right).

and dynamic detail representations of terrain data by
utilization of two main priority queues. They are driven
by split and merge operations that adjust the terrain
detail level dynamically. The split and merge functions
are both built and changed {rom the data information
held within a preprocessed Binary Triangle Tree data
structure. We suggest 1o use the implicit coordinates
method within an array of patch objects for memory
conservation. In addition, we vse a specific viewpoint
dependent triangle procedure to reduce the total amount
of computations needed to render the terrain data. The
more detailed description of the algorithm is provided
below.

The Real-time Terrain Rendering Algorithm

I. Preprocessing step.

[.1 Build a Binary Triangle Tree data structure to
represent the geomelnic properties of the
rendered terrain,

2. Dynamic rendering step.

2.1 Create two queues, the split queue and the
merge queue, 1o keep the priorities for each
individual triangle in the mesh triangulation;

2.2 Implement the spht and merge operations for

updating the wiangulated mesh.

Pertorm recursive, incremental update o real-

time optimally adapting mesh. using the implicit

coordinates method within an array of patch

objects;

24 Optimize processing using the viewpoini
dependent triangle rendering method:

2.5 Perform updates for wriangle strips affected by
the culling changes:

2.6 Implement error metric control.

I~
[}

3.3, Split and merge function

As i1 was mentioned above, the ROAM algorithm is
built around a Binary Tree structure that supplies
triangle information for the spht and merge operations

[7]. Obtaining any level of triangulation from a sequence
of sphts or merges can be done from any other
triangulation level. Two triangles that share the same
base and are on the same detail level are referred to as
a diamond. The split operation adds a new vertex at the
diamond center resulting in the creation ot four new
right-isosceles triangles, which will increase the number
of triangles representing a terrain area. Ay the number
of mangles increase, the detail level that can be
represented will also increase. The merge operation
works inversely to the split operation.

In our implementation, the split and merge operations
provide a flexible framework for making detailed updates
to the triangutated mesh (Fig. 2). The basic idea of
cach queue is 1o keep the priorities for each individual
triangle in the mesh triangulation. The split operations
would then start with the base triangulation level in the
queue and then repeatedly split the triangle vntil the
highest priority wiangle is reached. The only requirement
for the split priority queue is that the child’s priority
level must not he more than its parent’s. The merge
priority queuc allows the merge operation to start from
the previously rendered mesh triangulation. This allows
a more consistent and quicker frame-to-frame coherence.

merge

Fig. 2. Split and merge operations.

114 fnternational Journal of CAD/CAM Vol. 3, No. 2, pp. 11I~117

3.4. Implicit coordinates method

In our implementation, patches of triangles are uscd
Lo create and manage the mesh approximation within
the terrains landscape. We introduce the implicit
coordinates method within an array of patch objects (0
ensure more efficient memory usage. The method is
based on the following idea. Instead of storing
explicitly X, Y and Z coordinates for each vertex of a
triangle, implicit coordinates, within the landscape, are
stored for the isosceles right triangles thar will be
rendered onscreen. The advantage of this approach is
that ymplicitly defining coordinates saves 36 bytes of
RAM per triangle. An index within the patch array
references an individual Binary Triangle Tree that in
turn stores the reterences to cach triangle level of detail
for that patch. The sizc of the patch determines the
relative size of each patch within the landscape. The
patch objects ate held within the Landscape object. The
landscape object is built by combining each patch
section until the entire terrain is rendered.

3.5. Viewpoint dependent triangle rendering

A conventional method o reduce the amount of
computations needed to render a complex scene is to
apply Level of Detail (1.LOD) technigues. 1.0D method
determine which sections of rendered mesh require less
detail based on any number of cniteria. In this paper, we
extend the LOD (echnique with the viewpoinr dependent
triangle rendering method. The method allows more
flexible information storage for dynamic and interactive
first person view rendering. We allow portions of the
terrain that are currently too far away to be rendered
with few tnangles, and the same sections ol terrain to
be rendered with more triangles if the viewpoinl moves
closer. This is done by examining the field of view with
the view frostum to determine which patch sections
necd more detail due to their proximity to the user.

apex vertex _\

Lefl Neighbor

3
\\\nghl Neighbaor

™,

4 \
/ et Child Right Child \
N

C M
\ ///
/ /

i ¥
midpaint

VOTTeN

Base Neighbor

/

Fig. 3. Binary triangle tree data structure,

3.6, Recursive bintree data structure

To satisfy the LOD requirement a binary triangle tree
structure will be used 1o hold the various levels of
detail thal is needed by the graphics-rendenng engine.
In the case of ROAM. a binary triangle tree structure,
or a bintree, is a recursive structure where, at its lowest
level, represents a right-isosceles tnangle (sce Fig. 3).
In our implementation, each paich of terrain will have
an individual bintree to define the triangle detail levels.
The tnangle bintree structure starts with the base
terrain, either the least detail representation or the detail
level from the previously rendered image, in the leaf
components of the structure. The need for a change in
detail level is determined by examining the corresponding
error metrics.

4. Improving Rendering Quality

Data culling is a process of selecting, from the whole
scene, particular information (hat needs to be rendered.
Culling at this level is often achieved by using geometry-
based methods to determine which scene information
needs 1o be rendered. We implement three types of
geometric culling algonthms to improve smoothness and
reduce “popping”: View Frustum Culling, Backface
Culling and an original Relational Culling technique
(see Ilig. 4 and Fig. 5). As far as we know, this is the
first study that performs detailed comparison analysis
of a varnety of culling methods in application to
difterent GIS data.

The view frustum is the volume of space that includes
everything that is currently visible from a given
viewpoint. Six planes arranged in the shape of a
pyramid with the top removed, define the view frustum
area. If a point or object is inside this volume then it is
within the frustum arca and 1s potentially visible. If a
point is outside of the frustum then it is not visible to
the user, 1t needs not be rendered. To determine the
position of the points and object, their bhounding
volumes are computed. If the bounding volume lies on

REst

Loud tuor)[z 249

Mutitier ot Teifraie i

Control Pansh

Omans :
[Ciling Dptions” 1+
Rendenng Visw: +
Automated Derao Patns +

Fig. 4. Sample culling of rendered terrain.

Michael Hesse and Marina L. Gavrflova

@2 CPSC 502 - 3D Tenain Rendoring

Resuns

Tim 0 Loas {5

Total Num Cull

= gtigne 1k
Rendering View 4
Atomated Do Fathis +

Fig. 5. Sample ineshing of rendered tenain.

one of the frustum edges then that bounding volume is
fusther subdivided into smaller bounding volumes until
each object is either determined to be inside or outside
the frustum area. If at the lowest detail level an object
stl Des on a trustum edge, the portion of the object
inside the frustum area is rendered while the rest is
culied.

Historically, the geometric shapes used as bounding
volumes are boxes. or spheres, Lthat are quicker to Lest
and require less memory to store. They also require
only four floating-point numbers for representation, while
a bounding box requires eight. The disadvantage of a
bounding sphere is sometimes it nceds (o be very large
1o surround an object that could be casy encompassed
by a bounding box. To rectify this disadvantage, we
link multiple bounding spheres in a chain to better
simulate the object shapes.

We store the essentia]l information described by the
bounding spheres in the ierarchies of bounding volumes
as a Direct Acyclic Graph (DAG). This stucture will
allow for quick and easy access of abject information
based on their relative positions., Maodcling 1s done
using OpenGl. environment Lo extract the six planes of
the current view [rustum by retrieving the curent
PROJECTION and MODELVIEW matrices, combining
the two, and then extracting the frustum valucs from
the resulting matrix. Qur algorithm results in four
numbers that can represent the six planes. A point is
within the view frustum 1l 1115 1n front of all six planes
simultancously. To determine if a patch is within the
view frustum a bounding box approach is utilized. The
eight corners of the patch box are used to determine if
the patch should be rendered or not rendered based on
the same procedure as identifying of a point is with the
view frustum.

The second method that we implement in ths project
1s the backface culling. Based on a user's eye-space,
back-facing polygons arc located on the far side of an
opaque object. These polygons, although pan of the
viewer's scene, are not visible to the viewer and do not
need 10 be rendered. Once the polygons are determined

An Efficient Algorithm for Real-Tine 30 Terrain Walkthrough 115

o be back-facing, they can be culled before the scene
is rendered. We calculate the normal of the projected
polygon to determine if it is back-facing. This test
involves calculating the polygon’s normal and the
vector tormed from the vicwing point to any point on
the polygon.

The third technique that we introduce 15 the onginal
relational position culling technique, based on pre-
processing the terrain landscape into patches. Each
patch would contain the Binary Triangle Tree structure
of its terrain data and store each iriangle’s detail
information within its node. Additionally. «a visibility
Mag is stored to determine which patch is seen within
the view frustum. This approach is developed to guickly
cut the generalized unnecessary iewrain data from the
terrain data set. Initially, the algorithm determines the
frustum triangle corners from a (wo-dimensional (2D)
view frustum, which gives the algorithm the user and
user’s viewpoint’s positions. These three points are used
to determine the minimal rectangle that cncompasses
the 21D view frustum. Any points not within this rectangle
are immediatcly culled. Advantages of this method are
its simplicity and performance, that are discussed in the
previous work [6] by the authors.

5. Algorithm Performance Analysis

The man contribution of this work is in the
development of an efficient and adaptive real-time
rendering algorithm based on ROAM technique,
combined with a number of methods for increased
rendering speed, smoothness and realism. The algorithms
were implemented in Open GL.

When examining the rcsults from the cxperimeats,
several relationships were observed. One of the most
notable observarions was the change of the number of
frames per second (frame rate) during each of the paths
corresponding step. Fig. 6 demonstrates the change in
frame rate with all three culling techniques (View
Frustum, Position based and Backface culling) enabled
with three distinct patch sizes represented by (heir
corresponding array size. The size-16 frame rate
performs as expected with the graph wend line remaiming
rather flat and consistent (hroughout the entire
experimental path, except for its initial load up stage,
which is completed by the 25th frame. The size-64
frame rate demonstrates some interesting qualities. The
first 100 frames cmulates a similar pattern as the size-
16 trend line with the exception of a consistently lower
frame rate due to the increase of the number ol patches
that need Lo be rendered. The size-64 trend illustrates a
significant increase in frame rate from frame 100 to
170. The increase corresponds to the first set of constant
right and left hand turns in the experimental path that
lasts until frame 161, Note that there are no significant
differences in the number of [rames rendered per
second for different terrain models.

116 International Journal of CADICAM Vol 3, No. 2. pp. f11-117

Frames per Second - steep contour

changes

1 e
(=]
= .
§ — Size 16
f Size 64
g Size 128
i
w

= 0 O 0 s @ W) sk
MmO O - < N O
- ™

= =

233

Frames

Frames per Second - gradual contour

changes
12
D 18
§ 8 — Size 16
e B Size 64
E 4 Size 128
. _ew eb|
r 2
0
T 5 055 N b ® - 3
T = e & oN
Frames

Fig. 6. Number of frames per seconds lor two models.

This set of turns can also be seen when examining
Fig. 7 for both terrain models. The decrcase in triangles
per frame corresponds to the first left hand turn during
a specific path over the terrain, most Jikely due to the
quick pace of the torn and the dilficultly of the
rendering engine to propagate the necessary triangle
detail levels before the next turn begins. As each turn is
performed, the viewed landscapes true detail level is
reduced. The number of trniangles per frame continues
Lo reduce as the Llurn progresses. This is the result of the
view frustum largely shilling out of the frame of view.
The trend hne fattens as the forward movement allows
the rendering engine time to increase the detail level of
each frame, due to the limited changes in the view
frustum.

The rise of the size-64 trend line frame 180 is dve to
quick left and right turns which would Icave the middle
section of the view frustum untouched with only the
frustum edges needing to be recomputed. The largest
increase in the size — 64's wend line is due to the
experimental path moving directly backwards (back
stepping), which significantly decreases the amount of
the view frustum that must be recomputed.

Now, consider the time complexity of the algorithm.
Analysis ol vme required for split and merge functions
is quite intercsting. It was anticipated that there would
be an equal sharing of time between both the split and

Number of Triangles Rendered per
Frame - steep contour changes

25000
20000 :
» sl -
o Lo Size 16
— 15000
2 —— Wi e Size 64
= e S g Size 128
5000
0
Number of Triangles Rendered per
Frame - gradual contour changes
25000 i ’
«» 20000 Size 16
o 15000 b —| sl'zeez:
S 10000 = o ze
= 5000 R Size 128
0
T ¥ o N § o <
Frames

Fig. 7. Number of triangles rendered per frame for two models.

merge functions. That is. as one set of triangles needs
to be spht it would cause another set of triangles to
congruently be merged adjusting to meet the overall set
triangle detail level. When the application is cxamined
tn further detail, this is not always the case. Iminally, as
the triangles propagate through the landscape to their
set detail level there is a relatively equal amount of
time being spent in both algorithms. Interestingly, this
is not the case when the cuiling techniques are active.
In this case. a higher proportion of application time is
spent in the split function and is directly related to the
number of triangles being rendered per frame, Fig. 7.
and the movement ol the view [rustum. When a paich
ts culled from a the frustum, it has some delail level of
rendered triangles. These triangles are eliminated without
the usc of the merge algorithm. This elimination of
triangles allows the application to split new triangles on
the new patches entering the {rustum without increasing
the overall triangle detail level. As the movement of the
frustum increases with consecutive tums, this relationship
hacomes cven more pr()nounced‘

This observation helps to clanfy the relationship
between the number of wiangles per frames and the
movement of the frustum seen is Fig. 7. As the movement
of the frustum becomes more continuous there is a
reduction in the number of (riangles being rendered per
{rame. This would be directly related 1o the disappearance
of the rendered patches, with some triangle detail level,
being eliminated the frusium view and the appearance
of new palches, with lowest detail level, being brought

Michael Hesse and Marina L. Gavrdova

into view. As the lurn hecomes more continuous, the
greater the number of patches thal is eliminated and the
higher the demand on the spht algorithm.

The time efficiency of the algorithm is also related to
the size of the patch set. 1t also explains the algorithm
behaviour for Size-16 and Size-64 paich sizes in Fig. 7.
Since the Size-16 patches are larger, there is a greater
area outside the view frustuim being rendered. This
wasted rendering area would act as a frustumn buffer.
Even though the patches would be eliminated at the
same pacc as a smaller patch size (rustum, Size-64,
these larger patches would have the smallest amount of
detail on the portions of the patch that are outside the
frustum site lines. Therefore the elimination of these
patches will have less effect on the number of triangles
being rendered per frame. This relationship also adjusts
the ume wsage relationship between the split and merge
algorithms. Due to the frustum buffer the merge function
has ttme to adjust the triangle detail level of the patch
that will be elininated. This wriangle merge reduction
allows the split algorithm ntore time to readjust triangle
detail level before the jolt of having the entire patch
eliminaled. As the patch size becomes smaller the
adjustment ume for the merge algorithm becomes less
and the split algorithm more dominant.

6. Conclusions

The main contribution of this work is in the
development of an efficient and adaptive real-time
rendering algorithm based on ROAM technique,
combined with a number of methods for increased
rendering speed, smoothness and realism. Examining
both the number of frames per second and the number
of triangles per [rame suggests a number of conclusions
to be drawn. When investigating thc experimental
path’s frame rates with all of the culling techniques
active, we show that the patch sizes within the landscapes
are significantly related to the change of frustum
position. This corrclation is confirmed by examining
the number of triangle rendered per frame.

This paper also explored the time efficiency of the
split and merge algorithms. The experimentation
demonstrated that patch size has a correlation between
the times being spent in each algonthm. Larger patch
sizes effectively provide frustum buffer. As the patch
size becomes smaller, the merge algorithm becomes
less eftective but the split function become more in
demand due the rapid removal of paich with large
detail levels. These results provide a unigue inside view
on the correlation between the different mechanisms,
incorporated together in the presented algorithm for

An Efficient Afgorithnt for Real-Time 3D Terrain Walkihrough 117

realistic and efficient terrain representation and the
real-time level of detatl reduction. Further investigation
of culling techniques and error metrics for improved
visualization results for different types of rendered
terrain modcls is planned.

Acknowledgements

Authors would like to express their gratitude to
GEOIDE and NSERC granting agencies for their
partial support of this project.

References

[11 Blow, J. (2000). “Temain Rendering at High Levels of
Detwl” Game Developers’ Conference. San Jose,
California, USA,

(2] De Berg. M. and Dobrint. K. (1995}, “On levels of detail
in terrains.” Proc. 11" ACM Svinposiwm on Computational
Geometry, ACM Press, C26-C27.

[31 Duchaineauy, M. et al. (1997), *“ROAMing Terin: Real-
Time Optimalty Adapting Meshes.” IEEE Visualicarion
‘97 Proceeding. 81-88.

(4] Ferguson, R., Economy. R. Kelly, W. and Ramos P
(1990), “Continuous Terrain Level of Detail for Visual
Simulation.” IMAGE V Conference, 144-151.

[5] Gress, M. H., Gatti. R. and Staadi, O. (1995), “Fasl
Muluresolution Surface, Meshing,” Proceedings of
Visualization 95, 135-142.

[6] Hesse, M. and Gavrilova, M. (2003), “Quantilative

Analysis of Culling Techniques for Real-ime Rendering

of Digital Elevation Models.” WSC(2003, Science Press.

130-137.

Lindstrom. P and Koller, D. (1996), “Real-time

continuous level of detail vendering of height fields,”

Computer Graphics, SIGGRAPH 1996, 109-118.

Lindswom, P and Pascucci, V. (2002), “Temain

Simplification Simplified: A General Framework lor View-

Dependent Out-of-Cove Visualization” JEEE Visualiz.

amd Comp. Graphics, 8(3), 239-254.

Lloyd, B. and Egbert, P. (2002), “Horizon Occlusion

Culling for Real-time Rendering of Iictarchical Terrains,”

IEEE Visuadization 2002. Boston. Massachusetts.

[13 National Mapping Division. {L.5.Geological Sirvev, US
GeoData Dig. Elev. Models.

JLI] Routger, S.. tewdrich, W.. Slusallek. P and Seidel. H.
(1998), “Real-Time Generation of Continuous Levels of
Detail for Height Fields.” WSCG'08. 315-322.

112] Taylor. D. C. and Bamet. W. A. (1994). “An Algocithm for
Continuous Resolution, Polygonalizations of a Discrele
Surface.” Graphics Interfuce, 94. 33-42,

[13] VTP Virwal Terrain Project, htp:/Avwwvterrain.org/
index htmi.

[14] Zhao, Y., Zhou, Y.. Shi, J. and Pan, Z. (2001), “A Fasl
Algorithm for Large Scale Teyrain Walkthrough” CAD/
Graphics “2001, International Academic Publishers.

[7

18

9

http://www.vterrain.org/

